Head of Lake Wakatipu Natural Hazards Adaption

Engineering Approaches for Managing Liquefaction-Related Risk

Mike Jacka

Technical Director - Earthquake Engineering

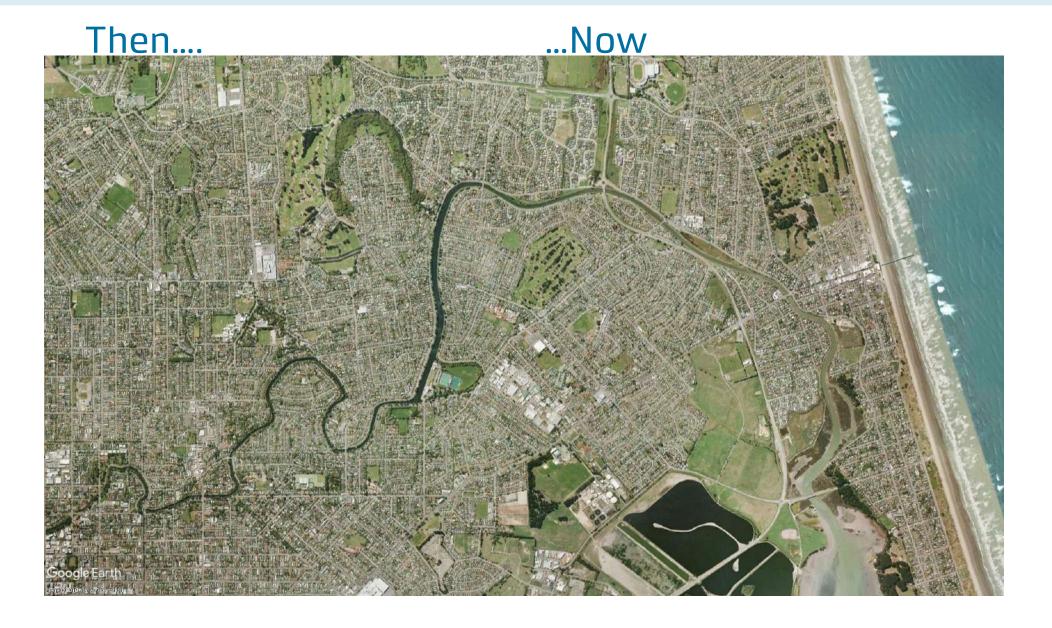
行行Tonkin+Taylor

Background

- What is liquefaction
- Regulatory context & increasing awareness of natural hazard risk

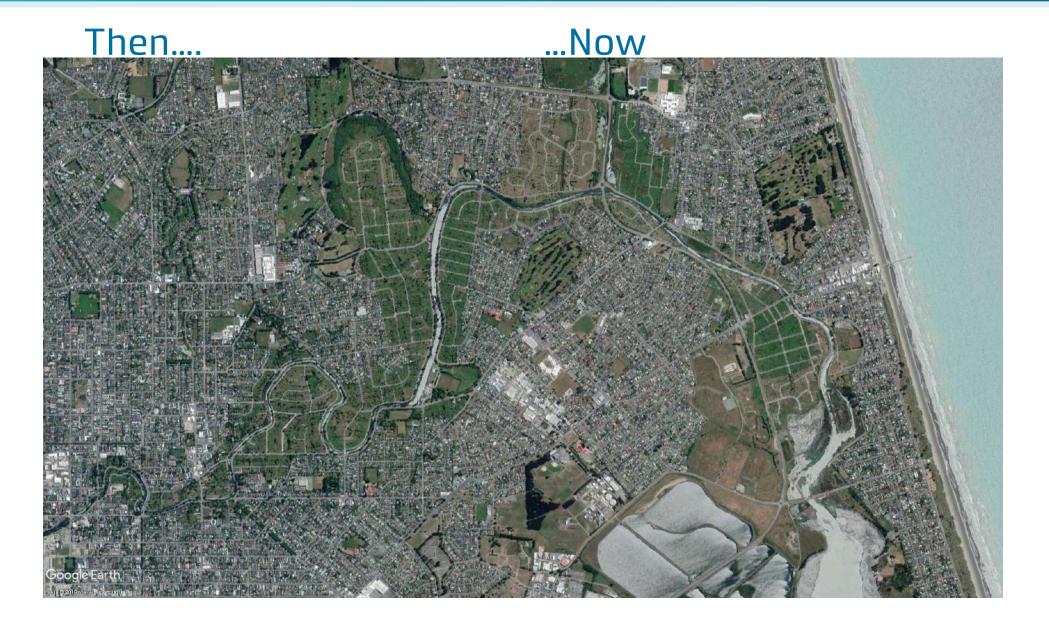
May 2022 report: Liquefaction Vulnerability Assessment

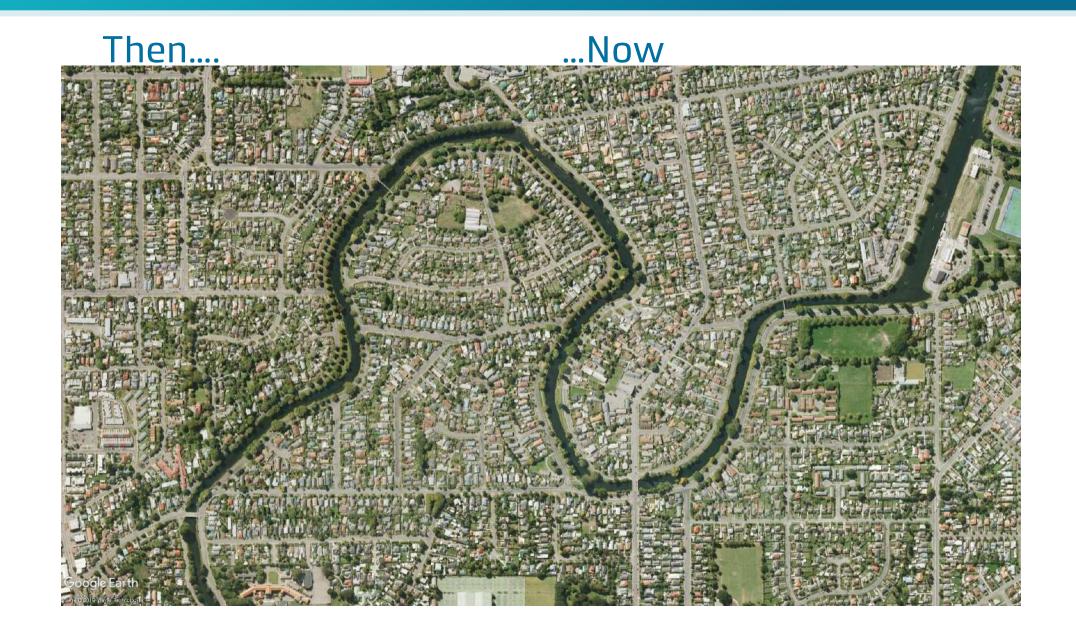
- Ground investigations and analysis
- Predicted damage


February 2023 report: Engineering Approaches for Managing Liquefaction-Related Risk

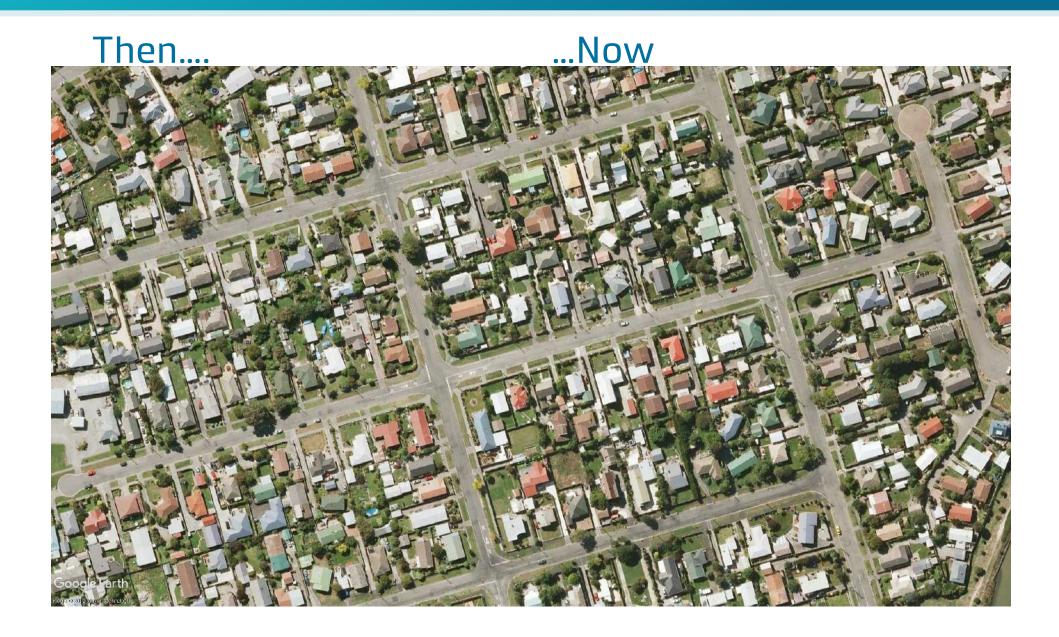
- Engineering mitigation options
- Effectiveness
- Relative cost comparison

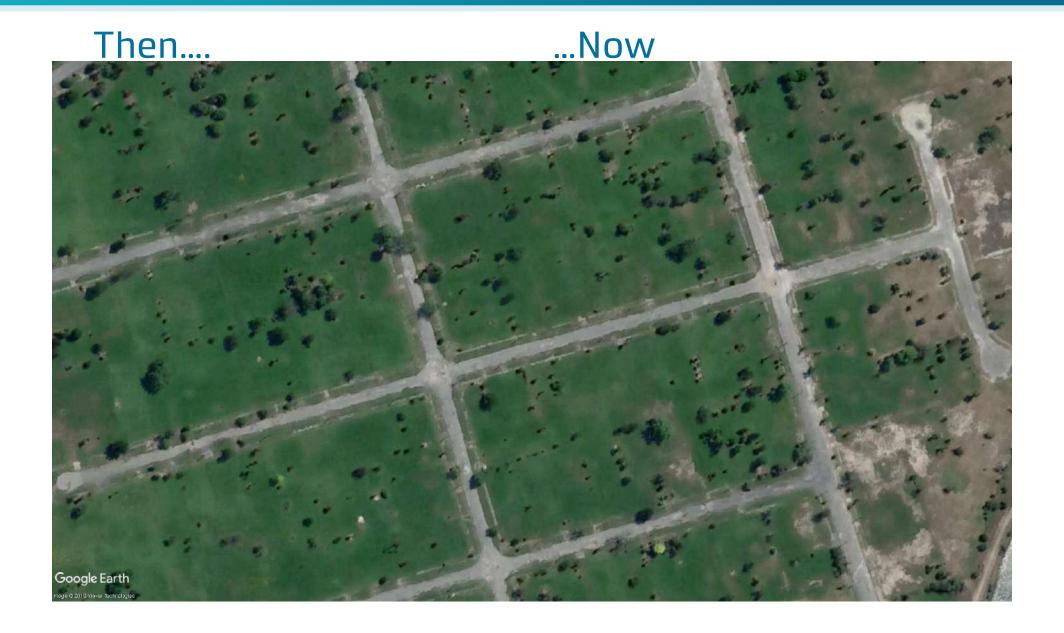
Examples from elsewhere around NZ

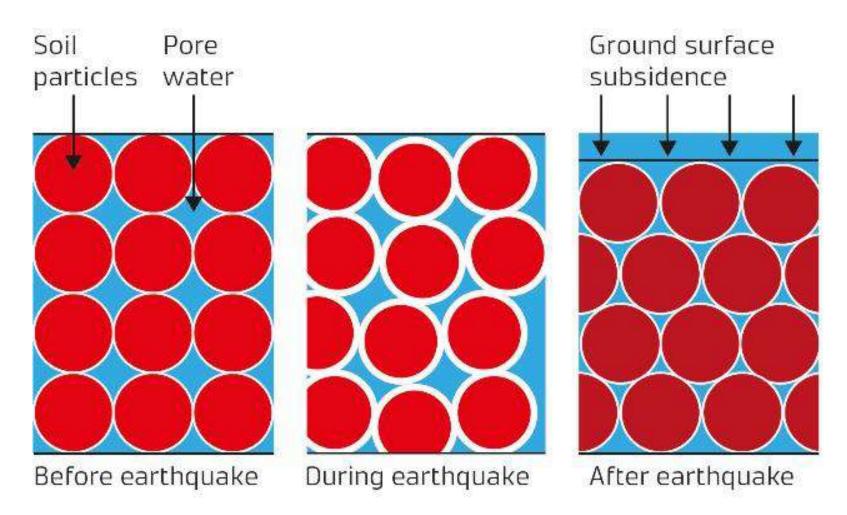




Why me?

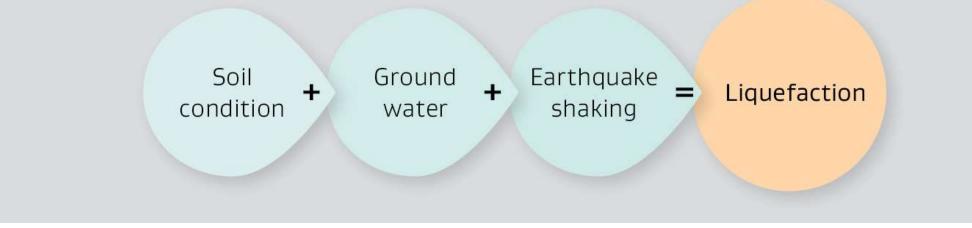






Background

What is liquefaction



What is liquefaction

Three key elements are all required for liquefaction to occur:

- 1 Loose non-plastic soil (typically sands and silts, or in rare cases gravel)
- 2 Saturated soil (ie below the groundwater table)
- 3 Sufficient ground shaking (a combination of the duration and intensity of shaking).

What is liquefaction

During and after the earthquake

Before the earthquake

During the earthquake fine sand, silt and water moves up under pressure through cracks Sand boils (Sand volcanoes) and other weak areas to erupt onto the ground surface. Near rivers the pressure Sand, silt and water erupts upward under pressure is relieved to the side as the ground moves sideways into the river channels. through cracks and flows out onto the surface, heavy objects like cars can sink into these cracks. Power poles are pulled over by their wires as they can't be supported in the liquefied ground. Underground cables are pulled apart. Lateral spreading River banks flow toward each other. Cracks open along the banks. Cracking can extend back into properties damaging houses. Fine sand and silt liquefies and water pressure increases

Tanks and pipes float up in the liquefied ground and break through the surface, pipes break, water and sewerage leaks into the ground.

Regulatory context & increasing awareness of risk


Canterbury Earthquakes Royal Commission findings:

- Inadequate geotechnical investigations and understanding of the geology.
- Limited appreciation of the impacts of widespread liquefaction.
- Land-use planning decisions have not always considered liquefaction hazards.
- Foundations not designed for liquefaction = poor foundation performance and damage to the building.
- Building settlement and structural damage occurred at serviceability limit state (SLS) earthquake loading.

Similar observations following 2013 Lake Grassmere and 2016 Kaikoura earthquakes.

Observed liquefaction from the last 100 years of earthquakes in NZ

Regulatory context & increasing awareness of risk

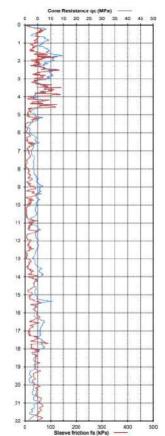
Guidance on current good practice:

- **MBIE (2012)** Repairing and rebuilding houses affected by the Canterbury earthquakes *Site investigations, liquefaction assessment, ground improvement, foundation options*
- **MBIE & MfE (2017)** Planning and engineering guidance for potentially liquefaction-prone land *Risk-based process to manage liquefaction related risk in land use planning & development decision-making*
- **MBIE & NZGS (2016 / 2022)** Earthquake geotechnical engineering practice series Aims to lift the level and improve consistency of earthquake geotechnical engineering practice in NZ

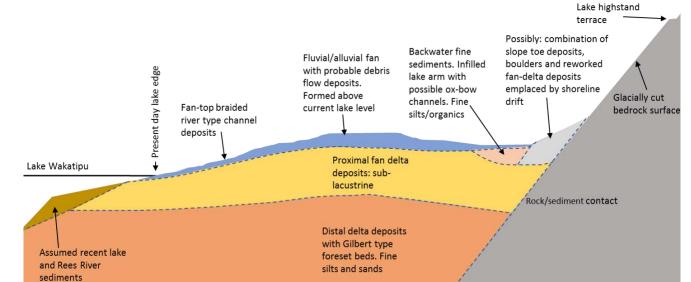


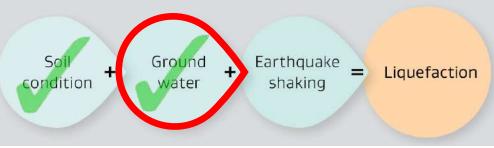
Regulatory context & increasing awareness of risk

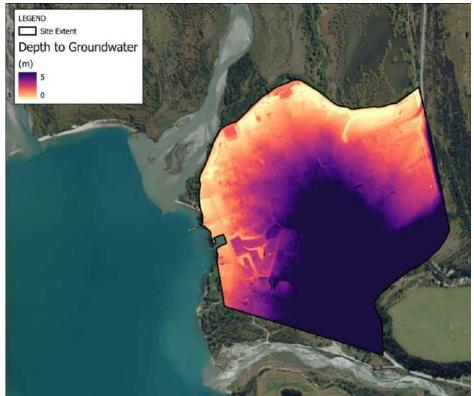
Recent regulatory changes:


- RMA S6 (2017) Natural hazard risk added to matters of national importance that must considered at all levels of planning and decision-making.
- RMA S106 & 220 (2017) Definition of natural hazards broadened to ensure all natural hazards considered.
- RMA S106 & 220 (2017) Risk based approach to considering subdivision consent applications, including
 natural hazards with low probability but high impact.
- NZ Building Code B1/AS1 (2019) Definition of 'Good Ground' amended to exclude land with potential for liquefaction and/or lateral spreading.

Liquefaction Vulnerability Assessment

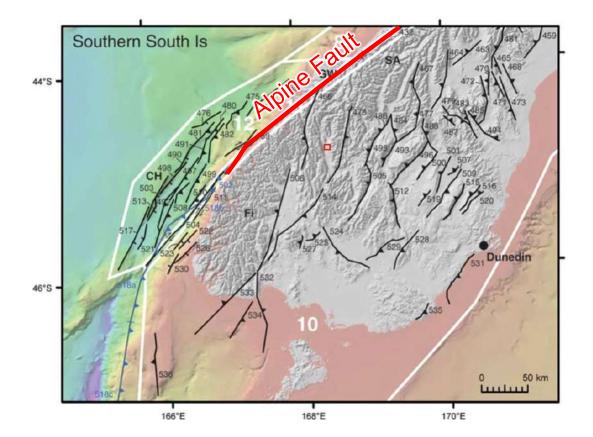

Loose to medium-dense sands.



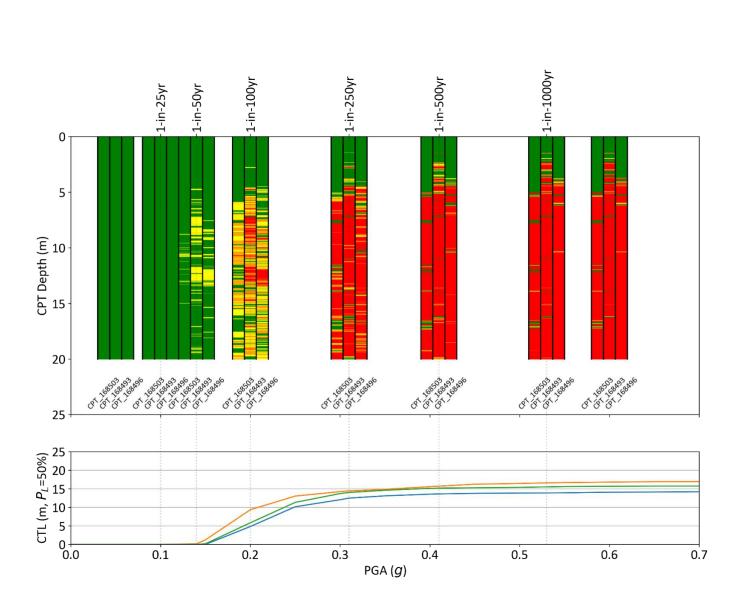


Groundwater is shallow.

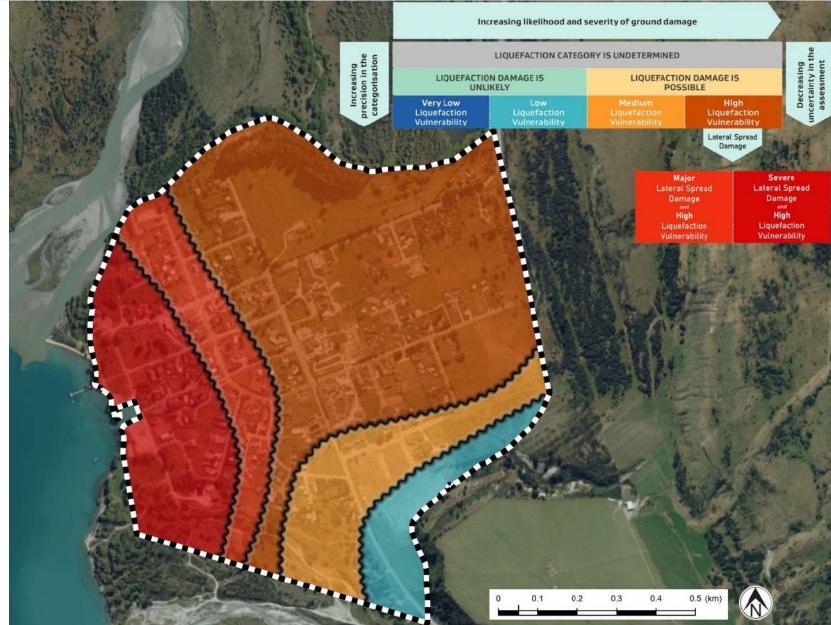
Groundwater Level


Groundwater Depth

Strong earthquake shaking is likely.



Return Period	25-yr	Alpine Fault Rupture Scenario (approx. 30-yr, conditional)	50-yr	100-yr	250-yr	500-yr	1000-yr	2500-yr
Annual Exceedance Probability	4%	3%	2%	1%	0.4%	0.2%	0.1%	0.04%
PGA (g)	0.1 to 0.16	0.11 (16 th percentile) 0.19 (50th percentile) 0.32 (84 th percentile)	0.14 to 0.22	0.20 to 0.32	0.31 to 0.48	0.41 to 0.63	0.53 to 0.82	0.74 to 1.14
Mw	6.1 to 6.5	8.1	6.1 to 6.5	6.1 to 6.5	6.1 to 6.5	6.5 to 7.1	6.5 to 7.1	6.5 to 7.1
Seismic Source (km)	62 to 17	55	60 to 17	57 to 17	54 to 17	50 to 17	46 to 17	41 to 17


- Liquefaction triggering predicted above 50 to 100 year earthquake shaking.
- Liquefaction to more than 20m depth expected for most of Glenorchy.
- Alpine Fault earthquake is likely to trigger widespread liquefaction. This has a 75% probability in the next 50 years.

Liquefaction vulnerability map

- Areas where both liquefaction and lateral spreading damage could occur. Subdivided into Major and Severe lateral spreading.
- Areas where only liquefaction damage is expected. Subdivided into Medium and High liquefaction vulnerability.

Liquefaction consequences

Major and Severe lateral spreading

Liquefaction consequences

Medium and High Liquefaction Vulnerability

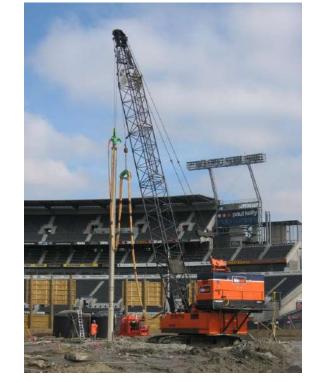
Engineering Approaches for Managing Risk

Reduce Impact:

- Improve land
- Improve buildings
- Improve infrastructure

Accept:

- Analysis to understand risk
- Make informed decision to accept risk (or residual risk after mitigation)



Techniques to improve land:

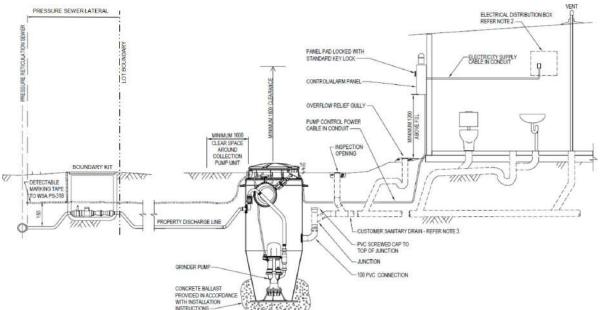
- Stone columns (4 20m deep)
- Dynamic compaction (4 20m deep)
- Impact roller (up to 4m deep)
- Geogrid-reinforced crushed gravel raft (1.2m deep)
- No improvement

Layout options:

- 30 40m wide strip alongside lake
- Under new buildings & infrastructure only
- Under existing buildings & infrastructure
- All land across the town

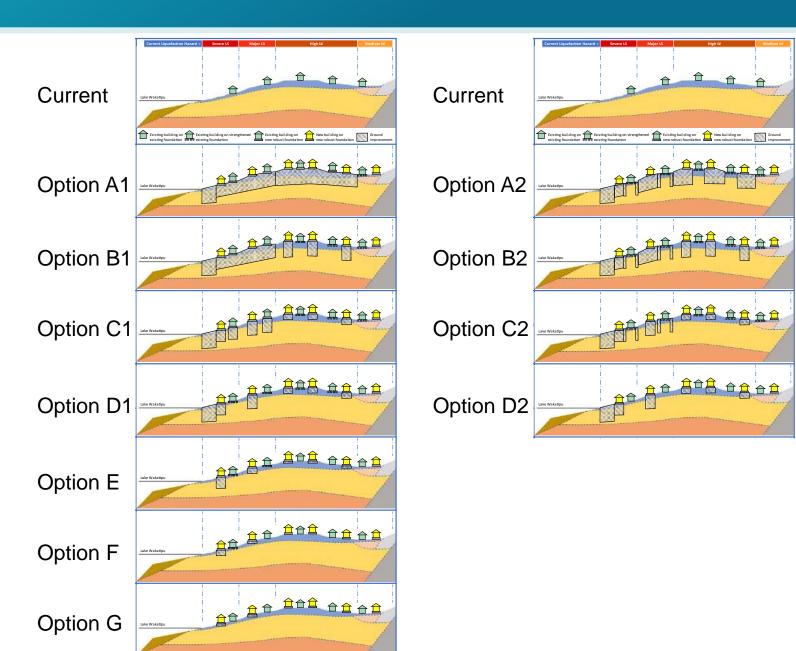
Techniques to reduce damage to buildings:

- New TC3 surface structure foundations
- New TC2 waffle slab foundation or enhanced lightweight platform on timber piles
- Retrofit to strengthen existing foundations and buildings
- No improvement



Techniques to reduce damage to infrastructure:

- New infrastructure with resilient detailing
- Retrofit to strengthen existing infrastructure
- No improvement



Layout options:

- Varies depending on current vulnerability to liquefaction and lateral spreading
- Existing vs new development
- Options towards top might prove to be impractical or unaffordable
- Options towards bottom might not meet building consent requirements or be difficult to obtain insurance for

Effectiveness:

Indicative liquefaction hazard, after mitigation

j	EX	ISTING DE	VELOPME	NT	NEW DEVELOPMENT			
Current liquefaction hazard:	Severe	Major	High	Medium	Severe	Major	High	Medium
	LS	LS	LV	LV	LS	LS	LV	LV
Option A1	High	High	Medium	Medium	High	High	Medium	Medium
	LV	LV	LV	LV	LV	LV	LV	LV
Option B1	High	High	High	Medium	High	High	Medium	Medium
	LV	LV	LV	LV	LV	LV	LV	LV
Option C1	High	High	High	Medium	High	High	Medium	Medium
	LV	LV	LV	LV	LV	LV	LV	LV
Option D1	Severe	Major	High	Medium	High	High	Medium	Medium
	LS	LS	LV	LV	LV	LV	LV	LV
Option E	Severe	Major	High	Medium	Major	Major	High	Medium
	LS	LS	LV	LV	LS	LS	LV	LV
Option F	Severe	Major	High	Medium	Severe	Major	High	Medium
	LS	LS	LV	LV	LS	LS	LV	LV
Option G	Severe	Major	High	Medium	Severe	Major	High	Medium
	LS	LS	LV	LV	LS	LS	LV	LV
Option A2	Major	High	High	Medium	High	High	Medium	Medium
	LS	LV	LV	LV	LV	LV	LV	LV
Option B2	Major	High	High	Medium	High	High	Medium	Medium
	LS	LV	LV	LV	LV	LV	LV	LV
Option C2	Major	High	High	Medium	High	High	Medium	Medium
	LS	LV	LV	LV	LV	LV	LV	LV
Option D2	Severe	Major	High	Medium	High	High	Medium	Medium
	LS	LS	LV	LV	LV	LV	LV	LV

Indicative proportion of buildings & infrastructure with severe liquefaction damage in large EQ, after mitigation

	EX	ISTING DE	VELOPM	INT		NEW DEVELOPMENT			
Current liquefaction hazard:	Severe LS	Major LS	High LV	Medium LV	Severe LS	Major LS	High LV	Medium LV	
Expected damage for current ground conditions:	90%	75%	50%	25%	-	-	•	. :	
Option A1	30%	25%	15%	15%	25%	20%	10%	10%	
Option B1	30%	25%	40%	15%	25%	20%	15%	10%	
Option C1	35%	30%	40%	15%	30%	25%	20%	10%	
Option D1	55%	50%	40%	25%	35%	30%	20%	10%	
Option E	75%	65%	50%	25%	40%	40%	25%	10%	
Option F	80%	75%	50%	25%	50%	50%	30%	10%	
Option G	90%	75%	50%	25%	60%	50%	30%	10%	
Option A2	45%	40%	40%	15%	30%	25%	10%	10%	
Option B2	45%	40%	40%	15%	30%	25%	15%	10%	
Option C2	45%	40%	40%	15%	30%	25%	20%	10%	
Option D2	65%	60%	50%	25%	35%	30%	20%	10%	

Indicative relative cost comparison:

		EX	ISTING DE	VELOPME	NT	NEW DEVELOPMENT			
Current liquefaction hazard:		Severe LS	Major LS	High LV	Medium LV	Severe LS	Major LS	High LV	Medium LV
мітіс	MITIGATION WORKS								
	15 – 20m deep by 30 – 40m wide perimeter treatment ground improvement alongside lake	\$\$\$\$	\$\$\$\$	N/A	N/A	\$\$\$\$	\$\$\$\$	N/A	N/A
	12m deep ground improvement, all land	\$\$\$\$\$	\$\$\$\$\$	\$\$\$\$\$	N/A	\$\$\$\$\$	\$\$\$\$\$	\$\$\$\$\$	N/A
	12m deep ground improvement, land under buildings & infrastructure only	\$\$\$\$	\$\$\$\$	\$\$\$\$	N/A	\$\$\$\$	\$\$\$\$	\$\$\$\$	N/A
LAND	12m deep ground improvement, land around buildings & infrastructure where accessible		\$\$\$\$	N/A	N/A	N/A	N/A	N/A	N/A
	4m deep ground improvement, land under buildings & infrastructure only	\$\$\$	\$\$\$	\$\$\$	N/A	\$\$\$	\$\$\$	\$\$\$	N/A
	1.2m deep geogrid-reinforced crushed gravel raft, under buildings & infrastructure only	\$\$\$	\$\$\$	\$\$\$	N/A	\$\$\$	\$\$\$	\$\$\$	N/A
	No land improvement	-	-	-	-	-	-	-	-
BUILDINGS	New TC3 surface structure foundations	\$\$\$\$	\$\$\$\$	\$\$\$\$	N/A	\$\$\$	\$\$\$	\$\$\$	N/A
	New TC2 waffle slab foundation or enhanced lightweight platform on timber piles	N/A	N/A	N/A	\$\$\$	N/A	N/A	N/A	\$
	Retrofit to strengthen existing foundations and buildings	\$\$	\$\$	\$	\$	N/A	N/A	N/A	N/A
	No foundation or building improvement	-	-	-	-	-	-	-	-
NFRASTRUCTURE	New infrastructure with resilient detailing	\$	\$	\$	\$	\$	\$	\$	\$
	Retrofit to strengthen existing infrastructure	\$	\$	\$	\$	N/A	N/A	N/A	N/A
INFR/	No infrastructure improvement	-	-	-	-	-	-	-	-

	-	No mitigation works, so no construction cost
	\$	Estimate in the order of \$25,000
	\$\$	Estimate in the order of \$50,000
	\$\$\$	Estimate in the order of \$100,000
щ	\$\$\$\$	Estimate in the order of \$200,000
SCAL	\$\$\$\$\$	Estimate more than \$300,000
OST	N/A	Mitigation option is not applicable for this scenario
LIVE C	Notes: 1)	These indicative estimates are based on the results of the EQC residential ground improvement trials and ground improvement pilot projects undertaken in 2015, uplifted by 50% for construction cost inflation between 2015 and 2022.
Ā	2)	All estimates are per property, assuming an average building footprint of 150m ² on a lot size of 800m ² .
REI	,	For perimeter treatment & infrastructure, the total estimate for mitigation is divided between the properties which benefit.
INDICATIVE RELATIVE COST SCALE	,	For existing development, TC2 and TC3 foundation estimates include the foundation construction as well as the enabling and reinstatement works required (e.g. lifting the existing building, repairing damage and reinstating services). These estimates relate to the direct construction work only, and do not include indirect costs such as overall community-wide programme management or temporary accommodation.
-	5)	For new development, TC2 and TC3 foundation estimates are calculated as the additional over and above a NZS3604 foundation (the standard foundation typically used for ground that is not liquefaction-prone).
	6)	
	7)	The estimates presented in this report are indicative only, to illustrate the potential order of magnitude and relativity between options. These estimates are based on assumed concepts – no analysis or design has been undertaken. Consequently, a significant margin of uncertainty exists on the estimates. If decision-making is found to be sensitive to these estimates, then we recommend further, more location-specific engineering design and construction cost advice is sought.

Overall cost for could be many tens to hundreds of millions of dollars

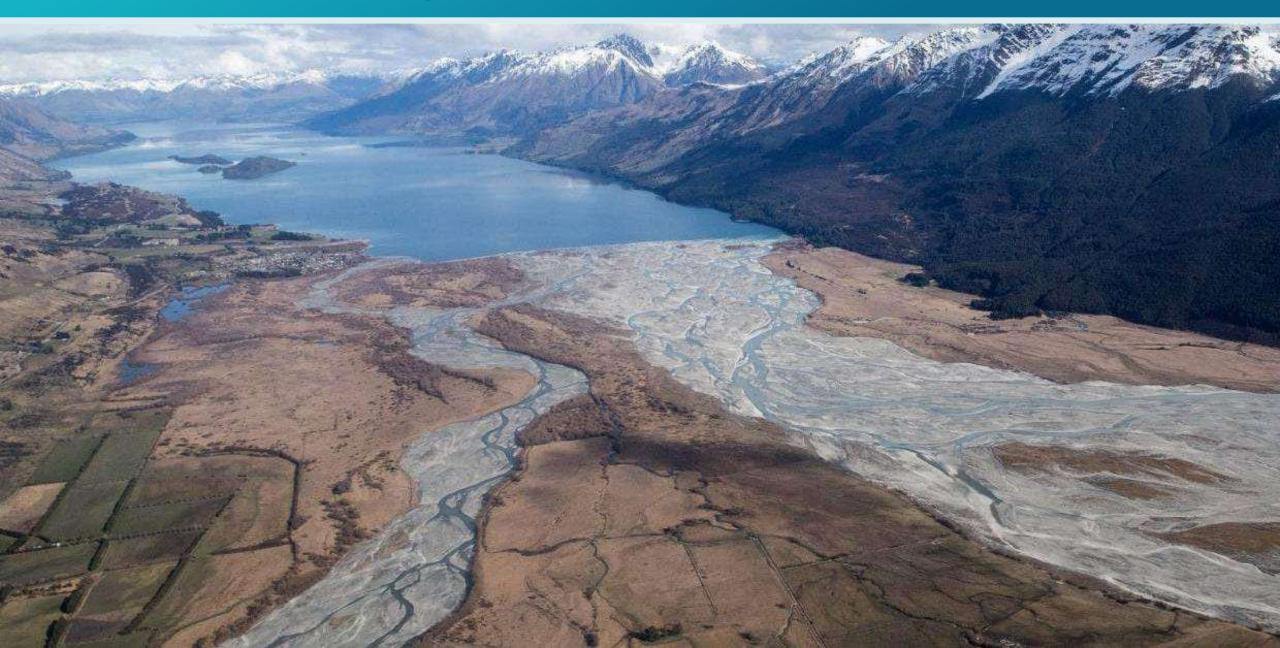
Examples from elsewhere around NZ

Tonkin+Taylor

New subdivisions:

- Pegasus Town (2007) Vibrocompaction around lake edge and commercial centre, 8 hectares to 4 – 13m depth (8m avg).
- Prestons Park (2010's) Impact roller compaction to 3m depth, over ~100 hectares.
- Beach Grove (2020's) Stone columns along stream, 4500m² to 4m deep. Plus 1.5m thick gravel fill over ~40 hectares

Major projects:


- Christchurch Metro Sports Facility
- Canterbury Multi-use Arena
- Tauranga Bay Link Expressway

Questions?

