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THE GLENORCHY
HAZARDSCAPE

Complex array of
seismic, mass
movement and flood
EVEILS

Coupled or ‘cascading’
hazards

Lake flooding Buckler Burn “S~Landslide induced waves
delta growth




FLUVIAL HAZARDS

If not the most catastrophic threat ... rivers pose
the most frequent hazard to the lakeside
communities

Risks to life, property and critical infrastructure

* Direct inundation and swift water hazards
 Entrained debris and sediment
e Bank and stream erosion

Unlike other natural hazards ... at Glenorchy we
expect fluvial hazards to increase in frequency
and severity in the coming decades

FEBRUARY 4™ 2020; c/o LUKE HUNTER




FAR FROM EQUILIBRIUM

DRIVER 1: CLIMATE CHANGE

0.5-1.5°C by 2040; 0.5-3.5 °C by 2090
20-40% increase in winter rainfall and intense storms
Up to 100% increase in mean annual flood flow

DRIVER 2: RIVER BED AGGRADATION

Build up of riverine sediment

Reduces the cross-sectional area I REDUCED
Reduces the gradient of the river FLOOD CAPACITY

REES-DART DELTA, DECEMBER 2009




LEGACY IN THE LANDSCAPE

> 20 major glaciations affecting the Southern

Alps in the last 2.6 million years
* Carved deep parabolic — (u-shaped) valleys

Deglaciation > lake formation c. 18,000 ka
* Impounded by large terminal moraines

Lake levels adjusted over time in response to

downcutting and re-routing of the outlet
* 360 m>309m

e Connecting upstream to Diamond Lake
Cook, Quincey, Brasington 2013; Sutherland et al., 2020
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LEGACY IN THE LANDSCAPE
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AGENTS OF EROSION

Globally extreme rates of erosion

* Glacial legacy > oversteepened slopes
* Continuing uplift >5 mm / year
* Orographic precipitation > 5000 mm / year

Unstable ‘paraglacial’ landscape
e Catchment dominated by active landslides
* Retreating headwater glaciers

‘Unlimited’ sediment availability

* More sediment available than the capacity of the
rivers to transport it downstream

* Transport limited catchment system
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A LIVING LANDSCAPE

Valleys infilled with extensive . ; 7

fluvial sediments - A 4
* braided rivers |
* boreholes to > 50 m
* Likely 100s m fill

Lower reaches

* As the lake drained
progressively to 309 m, Dart
and Rees Rivers combined to
create a large alluvial delta

ADVANCING delta

* 120 m over last 50 years
* 2-3 m per year
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A LIVING LANDSCAPE
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SHINING NEW LIGHT ON RIVERSCAPES: BEAM ME UP SCOTTY ...

Landsat Missions: Imaging the Earth Since 1972

| Landsat1 July 1972 January 1978
I Landsat2 January 1975 - July 1983
Landsat3 March 1978 — September 1983
L B Landsat4 July 1982 — December 1993
Landsat 5 March 1984 — January 2013
Landsat 6 October 1993
Landsat 7 April 1999 -
Landsat 8 February 2013 —
Landsat9 2021

§

EARTH OBSERVING NEXT GENERATION MOVING BEYOND MAPS >
SYSTEMS AND SATELLITES SPACE TECHNOLOGIES CAPTURING HIGHER DIMENSIONS
* Metric aerial photography since 1940s e 30-80 cm imagery * 3D laser scanning

* LANDSAT since 1973 e Stereo-Imaging * 00-000s of 3D observations per metre
* Archives of environmental change * Precision mapping * Quantify landscape change




NEW PERSPECTIVES ON OLD QUESTIONS




1. TE HORO | SLIP STREAM LANDSLIDE

5TH JANUARY 2014
LANDSLIDE AND DEBRIS
FLOWS IMPOUNDED
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QUANTIFYING SEDIMENT DELIVERY PROCESSES
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PHOTOGRAMMETRY - STEREO-IMAGE ANALYSIS
HIGH RESOLUTION DEMS AT CATCHMENT SCALES
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*” 20 m HEADSCARP
EROSION

15 m FAN SEDIMENTATION

500 1000
Station (m)

TOPOGRAPHIC CHANGE ANALYSIS: 2015-2012
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QUANTIFYING SEDIMENT BUDGET

e

LANDSLIDE SOURCE AREA

- 16,245,000 m?

i,

=== FAN STORAGE AREA

+6,230,000 m3

INITIAL ESTIMATE ~1-2 M m3

ANNUAL COARSE SEDIMENT LOAD TO
WAKATIPU JUST 300,000 m3

+616,000 m?

PRODUCTION — FAN STORAGE =
17,454,000-6,846,000=




AN ARCHIVE OF LANDSCAPE CHANGE
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1973

MAPPING THE RIVER CORRIDOR

1990

Machine Learning > classifying landcover

Visible and near infrared spectral response provides basis for
landcover classification
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REES-DART ACTIVE CHANNEL BELT




REES-DART ACTIVE CHANNEL BELT

HILLOCKS PARADISE TEHORO
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1) Long-term migration of lower reach/delta from TLto TR  2) Expansion followed by contraction of active river corridor




WHERE IS THE RIVER??!

. ALWAYS STABLE

TRANSITIONAL




0.25 m DEMs

3. DRIVERS OF RIVER ADJUSTMENT [tntisa st

reach of the
Rees River over an
annual flood season
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CHANNEL ADJUSTMENT: MORPHODYNAN"E |

EROSION AND SEDIMENTATION SIMULATION*
MODEL
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3. DRIVERS OF RIVER ADJUSTMENT

80% C.I.
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CONTROLS ON SEDIMENT TRANSPORT

-79,049 m3 o
63,277 m3 5 A
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MAGNITUDE
RELATIONSHIPS FOR
GEOMORPHICWORK
INVOLVED IN SHAPING
RIVERSCAPES
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QUANTIFY FREQUENCY-

Sediment is essentially is unlimited

Rate of transport is directly
proportional to the power of floods

> Increases in flood frequency will
lead to a direct increase in the
rate of sediment transport



WHAT HAVE WE LEARNED?

1. SEDIMENT SUPPLY (IS HIGH AND) MAY BE
DOMINATED BY EXTREME EVENTS

* Should expect variability over time, which will affect
rates of downstream channel stability

2. MAKE SPACE FOR RIVERS — TREAT THE VALLEY
FLOOR AND RIVER AS A CONTINUUM

e Should expect the active river corridor to
expand/contract/migrate over decadal timescales

3. SEDIMENT TRANSFER IS ‘“TRANSPORT LIMITED’

* Should expect increases in storm frequency and
severity to directly impact sediment transfer
through the river system




SUPPORTING NEW TECHNOLOGIES TO INFORM MANAGEMENT
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AIRBORNE LIDAR SURVEYS
HIGH RESOLUTION 3D MODELS
OF RIVER MORPHOLOGY
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GCD ANALYSIS
SOFTWARE

GEOMORPHIC CHANGE DETECTION SOFTWARE

RIVERSCAPES
CONSORTIUM

GCD Project Explorer

!, FeshieGCD

5 i Inputs
{Zy DEM Surveys
&# Edit DEM Survey Properties
@ AddtoMap
Delete DEM Survey

Add Associated Surface
Specify Error Surface
Derive Error Surface

3 DEM_Zuos

+-L% Associated Surfaces
PO DY NI DI Lt S 2SS

gcd.riverscapes.xyz



SUPPORTING NEW TECHNOLOGIES TO INFORM MANAGEMENT
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-0.50 to -0.40

BED LEVEL CHANGE 2019-2011 | L0l 0 HEe

-0.40 to -0.30

Difference lidar elevation models
surveyed in 2019 and 2011

Erosion (bed lowering) = reds L\ A e :
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LOWER REES RIVER

Bed level change averaged over 250 m §
sections (cells)

Significant and extensive
sedimentation throughout lower 5 km

0.2 -0.32 m increase in ‘'mean bed level
in just 8 years

> 1.25 - 2 m increase over 50 years

SIGNIFICANT LOSS OF FLOOD CAPACITY
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PLATE 1. FROM A LOOKING NORTH

JUNE 2020

Significant loss of

‘freeboard’ evident

along reaches of the

lower Rees River N ALODKING EfRT.
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INCREASING FLUVIAL HAZARD?

RIPARIAN EROSION
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INCREASING FLUVIAL HAZARD?

2. LOSS OF SERVICE OF EXISTING
STOPBANK PROTECTION

Elevated bed level > higher flood stage

Increased pressure on outer bends

Increased hydrostatic pressure

> Pipe formation under earthen stopbank

> Catastrophic breach




INCREASING FLUVIAL HAZARD?

3. BACKWATER FLOODING ALONG
LAGOON CREEK > OVERTOPPING OF
STOPBANK

Bed aggradation > reduced cross-sectional
area and reduced channel gradient

Reduces Rees mainstem flood capacity >
blocks and then reverses flow along
floodplain channels (Lagoon Creek)

Overtopping of stopbank at low points

BACKWATER FLOODING

uuuuuuuuuuuuuuuu



INCREASING FLUVIAL HAZARD?

4. ELEVATED RISK OF SEVERE OUTBREAK
FLOODING

Loss of freeboard upstream

Rerouting of flood flows along steeper
path across the floodplain > avulsion

Catastrophic — erosional — flooding with
the potential to overwhelm stopbanks

Swift water flooding through township




INCREASING FLUVIAL HAZARD?
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CONCLUSIONS

Fluvial hazards pose significant and
increasing challenge for the local
community into the future

Hazard set to increase due to both
climate change and long-term
geomorphic evolution

Some hazards that will become
increasingly hard to mitigate




