

### Form 1 – Application for Resource Consent

This application is made under Section 88 of the Resource Management Act 1991 (RMA).

The purpose of this Form 1 and the relevant activity form(s) is to provide applications with guidance on information that is required under the Resource Management Act 1991. Please note that these forms are to act as a guide only, and Otago Regional Council reserves the right to request additional information or to reject the application as incomplete under Section 88 of the RMA if the provisions of the fourth schedule of the RMA are not provided (refer to page 6 of this form, which details these requirements).

PLEASE NOTE: You must have Adobe Acrobat Reader installed onto your computer to use this editable version, which you can download for free from the Adobe website. This form cannot be filled in on your internet browser. REMEMBER to save the form to your computer after completing then attach and send via email along with the other relevant application forms/information to consents.applications@orc.govt.nz. The form can also be printed and completed manually.

#### 1(a). Applicant's details:

- The full names <u>or</u> Company name <u>or</u> Trust (including full names of all Trustees) of the consent holder who will be responsible for the consent and any associated costs.
- A resource consent can only be held by a legal organisation or fully named individual(s). A legal
  organisation includes a registered limited company, incorporated group or registered trust. If the
  application is for a Trust, the full names of all Trustees are required. If the application is not for a
  limited company, incorporated group or rust, then you must use fully named individual(s).
- All invoices will be made out to and sent to the applicant.

| Full name(s):                        | Otago Regional Council                                             |                       |      |
|--------------------------------------|--------------------------------------------------------------------|-----------------------|------|
| OR                                   | Stago Regional Council                                             |                       |      |
| <u> </u>                             |                                                                    |                       |      |
| Registered company:                  |                                                                    |                       |      |
|                                      |                                                                    |                       |      |
| OR                                   |                                                                    |                       |      |
|                                      |                                                                    |                       |      |
| Trust (include all Trustees full nam | res)                                                               |                       |      |
| (morado da Tradicoco fan fiam        |                                                                    |                       |      |
|                                      |                                                                    |                       |      |
| Postal address:                      |                                                                    |                       |      |
|                                      |                                                                    | Post code:            |      |
| <u>and</u>                           |                                                                    |                       |      |
|                                      | Laval O. Dhilin Lainn Have                                         | 444 Dettus Ctus et    |      |
| Physical address:                    | Level 2, Philip Laing House                                        | e, 144 Rattray Street |      |
| (not a PO Box number)                | Dunedin                                                            | Post code:            | 9054 |
|                                      |                                                                    | <u> </u>              |      |
| Phone number:                        | Business:                                                          | Drivete               |      |
| Phone number:                        | <u>-</u>                                                           | Private:              |      |
|                                      | Mobile:                                                            |                       |      |
| Email address:                       | Anna.Kluibenschedl@oi                                              | rc.govt.nz            |      |
| Diagram was dalam sa salidan         | . d . l                                                            | -i1 Oil btt-          |      |
|                                      | nd clear email address. Otago Re<br>correspondence including decis |                       |      |
| via email, unless you rec            |                                                                    |                       | ,    |
| Please tick if you do not pre        | efer contact by electronic means                                   |                       |      |
| , ,                                  | •                                                                  |                       |      |

| Full name:                                                                     | Anna Kluibenschedl                        |                                                                                     |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| Phone number:                                                                  | Business:                                 | Private:                                                                            |  |  |
|                                                                                | Mobile:                                   |                                                                                     |  |  |
| Email address:                                                                 | Anna.Kluibenschedl@orc.govt.nz            |                                                                                     |  |  |
| Consultant details                                                             | (if applicable):                          |                                                                                     |  |  |
| Contact person:                                                                | Jennifer Rose                             |                                                                                     |  |  |
| Company:                                                                       | Mitchell Daysh Ltd                        | <u> </u>                                                                            |  |  |
| Phone number:<br>Email address:                                                | Mobile:                                   | Business:                                                                           |  |  |
| Consents required                                                              | d in relation to this proposal:           |                                                                                     |  |  |
| Water                                                                          |                                           |                                                                                     |  |  |
| Take surface v                                                                 | vater Take groundwater                    | Divert Dam                                                                          |  |  |
| Discharge onto or                                                              | into:                                     |                                                                                     |  |  |
| Land                                                                           | <b>✓</b> Water                            | Air                                                                                 |  |  |
| Land use:                                                                      |                                           |                                                                                     |  |  |
| Bore constru                                                                   | ction Bore alteration                     | Disturbance of contaminated                                                         |  |  |
| Activities in or                                                               | on beds of lakes or rivers or flood-banks | Residential Earthworks                                                              |  |  |
| Coastal                                                                        |                                           |                                                                                     |  |  |
| Activities in the coastal marine area (i.e. below mean high water spring tide) |                                           |                                                                                     |  |  |
| before your appli                                                              |                                           | you must complete the appropriate application orms can be found on the Council's we |  |  |
| For what purpos                                                                | e is/are the consent(s) required (e.g. g  | ravel extraction, water for irrigation etc)                                         |  |  |
|                                                                                | Discharge of contaminants into the CMA    |                                                                                     |  |  |

1(b). Key contact for applicant details (if applicable):

| 5. | Location of proposed activity:                                                                                        |
|----|-----------------------------------------------------------------------------------------------------------------------|
|    | Address: N/A - refer to the maps included in the attached AEE                                                         |
|    | Legal description(s):                                                                                                 |
|    | Map reference(s) (NZTM 2000): E N                                                                                     |
|    | Please include location details on separate documentation if there are multiple sites or activities.                  |
|    | Note: Certificate(s) of Title less than three months old for the site to which this application relates are required. |
| 6. | Are there any current or expired Resource Consents relating to this proposal:                                         |
|    | Yes No                                                                                                                |
|    |                                                                                                                       |
|    | If yes, give consent number(s), description, and expiry date(s):                                                      |
|    |                                                                                                                       |
|    |                                                                                                                       |
|    | (a) Do you agree to your current consent automatically being surrendered should a replacement consent be issued?      |
|    | Yes No                                                                                                                |
|    |                                                                                                                       |
|    | (b) Has there been a previous application for this activity that was returned as incomplete?                          |
|    | Yes No                                                                                                                |
|    |                                                                                                                       |
|    | (c) Have you lodged a pre-application with Council for this activity?                                                 |
|    | Yes No                                                                                                                |
|    | (d) Have you spoken to a Council staff member about this application prior to lodging this application?               |
|    | Yes No                                                                                                                |
|    | If yes, please state name of staff member: Dwayne Daly                                                                |
|    | if yes, please state fiame of stall member.                                                                           |
| 7. | What is the term of consent you are seeking and reason for this term:                                                 |
|    | 35 years                                                                                                              |
|    |                                                                                                                       |
|    |                                                                                                                       |
| 8. | Territorial Local Authority in which activity is situated:                                                            |
|    | Dunedin City Council                                                                                                  |
|    | Clutha District Council                                                                                               |
|    | Central Otago District Council                                                                                        |
|    | Queenstown Lakes District Council                                                                                     |
|    | Waitaki District Council                                                                                              |

| 9.                                                                                                                                                                                                                                         | Do you require any other resource consent from any local authority for this activity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                            | Yes Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                            | If yes, please give the date applied for or issued:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 10. For the land on which the activity occurs, is the applicant (tick one):  If the applicant does not own the land to which this application relates, unconditional written approval from the land owner/affected party will be required. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                            | The owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                            | The lease holder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                            | The occupier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                            | Prospective purchaser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                            | If the applicant is not the landowner, who is the owner of the land on which the activity occurs/is to occur:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                            | Name of landowner:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                            | Phone number: Mobile:Business:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                            | Email address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 11.                                                                                                                                                                                                                                        | Site visit from the Consents Team:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                            | Consents staff are able to meet with you, visit your site and see what you are proposing to do. We find that this is beneficial to everyone involved. The cost of the visit will be included in the total cost of processing your consent. However, we find that applications that have an on-site visit are processed with less congestion and at a similar or lesser overall cost. Please let us know below if you would like us to come and see your site.                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                            | I would like a member of the Consents Team to visit my site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                            | Yes V No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 12.                                                                                                                                                                                                                                        | Processing Officer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                            | Due to high workloads or the complex nature of your application, it could be assigned to a consultant processing officer. Having your application assigned to an external officer should not greatly affect the processing costs. However, if you would like your application to be assigned to an internal officer then please advise. This may mean that your application enters a waiting line to be allocated and may not be processed straight away. If this is the case we will ask for a timeframe extension to cover the waiting time. There may be situations where we cannot accommodate this request but will let you know why this is. |  |
|                                                                                                                                                                                                                                            | I would like my application to only be processed by an internal staff member:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                            | Yes Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

#### 13. How to pay:

A deposit **must** accompany this application (see **page 9** for amounts and ways to pay). The applicant will be invoiced for all costs incurred in processing this application that exceed the deposit.

If the required deposit does not accompany your application, staff will contact you on the email address provided on this form to request payment, and after 3 working days your application will returned as incomplete if no payment is made for the required deposit.

When paying online, please use the word 'Consent' followed by the name of the applicant as a reference.

Method of payment:

Online bank transfer

In person

Credit card

Date of payment:

Amount paid:

Payment reference:

**Please note:** Your deposit may not cover the entire cost of processing your application. At the end of the application process you will be invoiced for any costs that exceed the deposit. Interim invoices may be sent out for applications, where appropriate. We will communicate processing costs to you at key stages through the process. If you would like this, then please let us know and we can see if this is an option for you.

If your application is returned to you, you will still be charged for the cost of processing the application up to the point it was returned or withdrawn. Therefore, it is recommended that you have your application checked before it is lodged. This can be done as part of a pre-application. Further information regarding pre-applications can be found via the following link:

https://www.orc.govt.nz/consents-and-compliance/before-applying-for-a-consent

Information regarding costs can be found via the following link: <a href="https://www.orc.govt.nz/consents/ready-to-apply-for-a-consent/fees-and-charges">www.orc.govt.nz/consents/ready-to-apply-for-a-consent/fees-and-charges</a>

# Checklist Before signing the declaration below, in order to provide a complete application have you remembered to: Fully complete this Form 1, including signed declaration. Completed the necessary application forms relating to the activity Application forms can be found on Council's website via the following link: www.orc.govt.nz/consents/ready-to-apply-for-a-consent Payment of the required deposit (see page 8 for fees schedule) Written approvals from all potentially affected parties "Written Approval of an Affected Party" forms are available from Councils website An assessment of effects on the environment An assessment against the relevant objectives, policies and rules from Regional Council Plans, Regional Policy Statement (including proposed and partially operative versions), and relevant Regulations, National Policy Statements, National Environmental Standards and iwi management plans Site and location plans Certificate(s) of Title less than three months old for the site to which this application relates Certificates of Title can be obtained via the Land Information New Zealand website: www.linz.govt.nz **Declaration** I/we hereby certify that to the best of my/our knowledge and belief, the information given in this application is true and correct. I/we undertake to pay all actual and reasonable application processing costs incurred by the Otago Regional Council. Jennifer Rose Name(s): Signature(s):\* (or person authorised to sign on behalf of applicant) Ensure you use the "fill and sign" function of Adobe Acrobat when signing this form. Either draw your signature or add an image. Council cannot accept typed signatures.

| Designation | n:                      |  |  |
|-------------|-------------------------|--|--|
| (e.g. owner | r, manager, consultant) |  |  |
|             |                         |  |  |
| Date:       | 16.5.2025               |  |  |

Council can accept electronic lodgment of applications if sent to <a href="mailto:consents.applications@orc.govt.nz">consents.applications@orc.govt.nz</a>. Alternatively,

applications can be posted to: Otago Regional Council Private Bag 1954 70 Stafford Street Dunedin 9054

#### Consultation

(Consultation is not compulsory, but it can make a process easier and reduce costs)

Under Section 95E of the Resource Management Act 1991 (the Act), the Council will identify affected parties to an application and if the application is to be processed on a non-notified basis the unconditional written approval of affected parties will be required. Consultation with potentially affected parties and interested parties can be commenced prior to lodging the application.

Consultation may be required with the appropriate Tangata Whenua for the area. The address of the local lwi office is: Aukaha, 258 Stuart Street, P O Box 446, Dunedin, Fax (03) 477-0072, Phone (03) 477-0071, Email info@aukaha.co.nz. If you are in the Clutha River area you may need to talk to Te Ao Marama Inc, Phone (03) 931 1242. If you require further advice, please contact the Otago Regional Council.

Good consultation practices include:

- Giving people sufficient information to understand your proposal and the likely effects it may have on them.
- Allowing sufficient time for them to assess and respond to the information.
- Considering and taking into account their responses

Written approval forms are available on Council's website.

#### Information Requirements

In order for any consent application to be processed efficiently in the minimum time and at minimum cost, it is critical that as much relevant information as possible is included with the application.

#### Resource Management Act 1991

FOURTH SCHEDULE - ASSESSMENT OF EFFECTS ON THE ENVIRONMENT

(Below are the provisions of the fourth schedule of the Act, which describes what must be in an application for resource consent, as amended in 2015)

#### 1. Information must be specified in sufficient detail.

Any information required by this schedule, including an assessment under clause 2(1)(f) or (g), must be specified in sufficient detail to satisfy the purpose for which it is required.

#### 2. Information required in all applications.

- (1) An application for a resource consent for an activity (the **activity**) must include the following:
  - (a) a description of the activity; and
  - (b) a description of the site at which the activity is to occur; and
  - (c) the full name and address of each owner or occupier of the site; and
  - (d) a description of any other activities that are part of the proposal to which the application relates; and
  - (e) a description of any other resource consents required for the proposal to which the application relates; and
  - (f) an assessment of the activity against the matters set out in Part 2; and
  - (g) an assessment of the activity against any relevant provisions of a document referred to in section 104(1)(b) ("document" includes regional and district plans, regulations, national policy statements, iwi plans).
- (2) The assessment under subclause (1)(g) must include an assessment of the activity against:
  - (a) any relevant objectives, policies, or rules in a document; and
  - (b) any relevant requirements, conditions, or permissions in any rules in a document; and
  - (c) any other relevant requirements in a document (for example, in a national environmental standard or other regulations).
- (3) An application must also include an assessment of the activity's effects on the environment that:
  - (a) includes the information required by clause 6; and
  - (b) addresses the matters specified in clause 7; and
  - (c) includes such detail as corresponds with the scale and significance of the effects that the activity may have on the environment.

#### 3. Additional information required in some applications.

An application must also include any of the following that apply:

(1) if any permitted activity is part of the proposal to which the application relates, a description of the permitted activity that demonstrates that it complies with the requirements, conditions, and permissions for the permitted activity (so that a resource consent is not required for that activity under section 87A(1))

- (2) if the application is affected by section 124 or 165ZH(1)(c) (which relate to existing resource consents), an assessment of the value of the investment of the existing consent holder (for the purposes of section 104(2A))
- (3) if the activity is to occur in an area within the scope of a planning document prepared by a customary marine title group under section 85 of the Marine and Coastal Area (Takutai Moana) Act 2011, an assessment of the activity against any resource management matters set out in that planning document (for the purposes of section 104(2B).
- 4. (relates to subdivisions not included here as subdivisions are not within ORC's jurisdiction)

#### 5. Additional information required in application for reclamation.

An application for a resource consent for reclamation must also include information to show the area to be reclaimed, including the following:

- (1) the location of the area; and
- (2) if practicable, the position of all new boundaries; and
- (3) any part of the area to be set aside as an esplanade reserve or esplanade strip.

#### Assessment of environmental effects

#### Information required in assessment of environmental effects.

- (1) An assessment of the activity's effects on the environment must include the following information:
  - if it is likely that the activity will result in any significant adverse effect on the environment, a description
    of any possible alternative locations or methods for undertaking the activity.
  - (b) an assessment of the actual or potential effect on the environment of the activity
  - (c) if the activity includes the use of hazardous substances and installations, an assessment of any risks to the environment that are likely to arise from such use.
  - (d) if the activity includes the discharge of any contaminant, a description of:
    - the nature of the discharge and the sensitivity of the receiving environment to adverse effects;
       and
    - (ii) any possible alternative methods of discharge, including discharge into any other receiving environment.
  - (e) a description of the mitigation measures (including safeguards and contingency plans where relevant) to be undertaken to help prevent or reduce the actual or potential effect.
  - (f) identification of the persons affected by the activity, any consultation undertaken, and any response to the views of any person consulted.
  - (g) if the scale and significance of the activity's effects are such that monitoring is required, a description of how and by whom the effects will be monitored if the activity is approved.
  - (h) if the activity will, or is likely to, have adverse effects that are more than minor on the exercise of a protected customary right, a description of possible alternative locations or methods for the exercise of the activity (unless written approval for the activity is given by the protected customary rights group).
- (2) A requirement to include information in the assessment of environmental effects is subject to the provisions of any policy statement or plan.
- (3) To avoid doubt, subclause (1)(f) obliges an applicant to report as to the persons identified as being affected by the proposal, but does not:
  - (a) oblige the applicant to consult any person; or
  - (b) create any ground for expecting that the applicant will consult any person.

#### 7. Matters that must be addressed by assessment of environmental effects.

- (1) An assessment of the activity's effects on the environment must address the following matters:
  - (a) any effect on those in the neighbourhood and, where relevant, the wider community, including any social, economic, or cultural effects
  - (b) any physical effect on the locality, including any landscape and visual effects.
  - (c) any effect on ecosystems, including effects on plants or animals and any physical disturbance of habitats in the vicinity.
  - (d) any effect on natural and physical resources having aesthetic, recreational, scientific, historical, spiritual, or cultural value, or other special value, for present or future generations.
  - (e) any discharge of contaminants into the environment, including any unreasonable emission of noise, and options for the treatment and disposal of contaminants
  - (f) any risk to the neighbourhood, the wider community, or the environment through natural hazards or the use of hazardous substances or hazardous installations.
- (2) The requirement to address a matter in the assessment of environmental effects is subject to the provisions of any policy statement or plan.

Set out below are details of the amounts payable for those activities to be funded by fees and charges, as authorised by s36(1) of the Resource Management Act 1991.

#### Resource Consent Application Fees (from 1 July 2022)

Note that the fees shown below are a deposit to be paid on lodgment of a consent application and applications for exemptions in respect of water measuring devices. The deposit will not usually cover the full cost of processing. the application, and further actual and reasonable costs are incurred at the rate shown in the scale of charges. GST is included in all fees and charges. Costs for applications are typically invoiced at the end of process.

If you wish to make a payment via internet banking, or online, the details are below. Please note the applicants name and 'consent application' should be used as reference when paying the deposit.

For ways to pay, visit: www.orc.govt.nz/consents/ready-to-apply-for-a-consent

#### **Pre-Application Work**

We offer a pre-application service to help customers. The costs related to this service include; administration, research, meeting time, taking minutes, distribution of meeting notes, and follow up advice. Pre-applications typically require 2-4 hours to complete the above actions. 30 minutes of work carried out by the Consents Planner is free of charge. The remaining work is charged at the relevant staff member's hourly rate in accordance with the fees and charges schedule.

For deposit fee amounts and scale of charges these can be found via Council's website at: <a href="https://www.orc.govt.nz/feesandcharges">https://www.orc.govt.nz/feesandcharges</a>. Alternatively, you can contact us via phone on 03 474 0827, or 0800 474 082 Monday to Friday, 8am to 5pm.

#### Review of consent conditions

Following the granting of a consent, a subsequent review of consent conditions may be carried out at either the request of the consent holder, or as authorised under Section 128, as a requirement of Council. Costs incurred in undertaking reviews requested by the consent holder will be payable by the consent holder at the rates shown in the Scale of Charges above.

Reviews initiated by Council will not be charged to consent holders.

#### **Compliance Monitoring Charges**

Compliance charges may also be applied to any granted consent(s). These can be found via Council's website at: https://www.orc.govt.nz/media/14502/ap-2023-web.pdf

# 7

# **Application To Discharge Water or Contaminants to Water**



| (For Office Use Only) |
|-----------------------|
| Consent No.:          |

This application form should be used for all discharges to water, e.g. to rivers, lakes, ocean, harbours, etc.

Show the location of the discharge on your map on Form 1. Include design plans and details with this application.

|    | Part A: General                                                                                                                                                                                                                                                                                   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | What is the discharge: Water or contaminant                                                                                                                                                                                                                                                       |
|    | (A contaminant is any substance or water which is likely to change the natural state of the water into which it is discharged in any way.)                                                                                                                                                        |
| 2. | What is the source of the water or contaminant (eg. Sewage treatment, industry, sewage pumping station, water treatment, rural activity)?  The discharge of treated seawater into the coastal marine area associated with the treatment                                                           |
|    | of invasive marine species                                                                                                                                                                                                                                                                        |
| 3. | Describe the contaminant: Treated seawater containing residual chlorine, as a solution of sodium dichloroisocyanurate (dichlor), and sodium thiosulphate (as a neutralizing agent), as well as                                                                                                    |
|    | residual cyanuric acid, dissolved oxygen, dissolved sulphides and organic matter.                                                                                                                                                                                                                 |
|    | including, where appropriate:  Temperature: °C  pH: Suspended solids:g/m³                                                                                                                                                                                                                         |
|    | BOD <sub>5</sub> : g/m <sup>3</sup> Faecal coliforms: cfu/100mls                                                                                                                                                                                                                                  |
|    | The chemical content, including heavy metals or toxic substances, nitrates, ammonia and dissolved reactive phosphorous and their toxicity to the receiving water / environment.                                                                                                                   |
| 4. | Is the contaminant treated in any way before being discharged? Yes No If yes, describe treatment Encapsulated water is treated with a biocide (chlorine) which                                                                                                                                    |
|    | is neutralized by adding a non toxic neutralizing agent (sodium thiosulphate) prior to discharge                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                   |
|    | so that the residual chlorine does not exceed 0.5 mg/L.                                                                                                                                                                                                                                           |
| 5. | What is the name of the water body into which the discharge is made (e.g. name of river, lake, bay, harbour, ocean, etc) and what is the map reference in NZTM 2000 at the discharge point? Karitane, Taieri Mouth, Otago harbour, Oamaru harbour and Moreaki - as shown in Appendix A of the AEE |
|    | NZTM 2000: EN                                                                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                                                                                   |

|                                                                                                | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discharge Rate Information:                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Maximum flow rate:                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | litres per s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | econo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Maximum flow:                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cubic meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| or                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cubic meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| For sewage discharges:                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Average dry weather flow:                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>N/A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | litres per s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | econ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Peak flow:                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | litres per s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | econ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Daily peak flow:                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cubic meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Peak wet weather flow:                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | litres per s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | econo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Is the discharge:                                                                              | continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or intermitte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| What will be the maximum discharging pe                                                        | riod?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hours per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| %                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Does the discharge also involve:                                                               | Outlet structure?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Boos the disentage also involve.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                | Discharge to air?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ou answered "Yes" to any of 7. above, anot                                                     | her schedule to thi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s consent app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lication may b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uired.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Part B: Assessment of                                                                          | of Effects on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the Env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ironmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comment on the possible effects the disc<br>any downstream users:<br>Refer to the attached AEE | charge may have o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n the quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of the receivi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ater and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                | reasonable distanc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vac N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •                                                                                              | o oguatio planta o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )<br><b>I</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                | e, aquatic piants, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ıc :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                | e.g., swimming, fish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ning,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (v) Areas of particular aesthetic or scien                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · •                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                | Maximum flow rate:  Maximum flow:  Or  For sewage discharges:  Average dry weather flow:  Peak flow:  Daily peak flow:  Peak wet weather flow:  Is the discharge:  What will be the maximum discharging pe  Does the discharge also involve:  Ou answered "Yes" to any of 7. above, anote  Part B: Assessment of  Comment on the possible effects the discany downstream users:  Refer to the attached AEE  In the vicinity of the discharge or within a downstream are there any:  (i) Obvious signs of fish, eels, insect lift  (ii) Wetlands (e.g., swamp areas)?  (iii) Waste discharges (e.g., rural, indust (v. Recreational activities carried out (e.g., seenic waterfall, rapids, archaece (e.g., scenic waterfall, e.g., scenic waterfall, e.g., scenic waterf | Maximum flow rate:  Maximum flow:  Or  For sewage discharges:  Average dry weather flow: Peak flow: Daily peak flow: Peak wet weather flow:  Is the discharge:  Continuous  What will be the maximum discharging period?  Does the discharge also involve:  Outlet structure? Diversion? Discharge to air?  Ou answered "Yes" to any of 7. above, another schedule to this  Part B: Assessment of Effects on  Comment on the possible effects the discharge may have of any downstream users: Refer to the attached AEE  In the vicinity of the discharge or within a reasonable distance downstream are there any:  (i) Obvious signs of fish, eels, insect life, aquatic plants, efficiency with the attached (e.g., swamp areas)?  (iii) Waste discharges (e.g., rural, industrial sewage, etc)?  (iv) Recreational activities carried out (e.g., swimming, fish canoeing?)  (v) Areas of particular aesthetic or scientific value (e.g., scenic waterfall, rapids, archaeological sites)? | Maximum flow rate:  Maximum flow:  or  For sewage discharges:  Average dry weather flow:  Peak flow:  Daily peak flow:  Peak wet weather flow:  Peak wet weather flow:  What will be the maximum discharging period?  Mischarge also involve:  Does the discharge also involve:  Outlet structure?  Yes  Diversion?  Yes  Discharge to air?  Yes  ou answered "Yes" to any of 7. above, another schedule to this consent app  Part B: Assessment of Effects on the Env  Comment on the possible effects the discharge may have on the quality any downstream users:  Refer to the attached AEE  In the vicinity of the discharge or within a reasonable distance downstream are there any:  (i) Obvious signs of fish, eels, insect life, aquatic plants, etc?  (ii) Wetlands (e.g., swamp areas)?  (iii) Waste discharges (e.g., rural, industrial sewage, etc)?  (iv) Recreational activities carried out (e.g., swimming, fishing, canoeing?)  (v) Areas of particular aesthetic or scientific value (e.g., scenic waterfall, rapids, archaeological sites)? | Maximum flow rate:  Maximum flow:  Or  Cubic metrocubic | Maximum flow rate:  Maximum flow:  Or  Cubic metres per second cubic metres per cubic metres per cubic metres per second cubic |

CONSENT FORM NO. 7. Page 2.

# Part B: Assessment of Effects on the Environment (Contd.)

|                                                                   | (Continue on a separate page if necessary)                                                                                                                                                                                                                               |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   | native methods of disposal or discharge locations have you considered?                                                                                                                                                                                                   |
| Refer to th                                                       | ne attached AEE                                                                                                                                                                                                                                                          |
|                                                                   |                                                                                                                                                                                                                                                                          |
|                                                                   |                                                                                                                                                                                                                                                                          |
|                                                                   |                                                                                                                                                                                                                                                                          |
|                                                                   |                                                                                                                                                                                                                                                                          |
|                                                                   |                                                                                                                                                                                                                                                                          |
| Why did yo                                                        | y shoots the proposed method of disposel and leastion point?                                                                                                                                                                                                             |
|                                                                   | u choose the proposed method of disposal and location point?                                                                                                                                                                                                             |
|                                                                   |                                                                                                                                                                                                                                                                          |
|                                                                   |                                                                                                                                                                                                                                                                          |
|                                                                   |                                                                                                                                                                                                                                                                          |
|                                                                   |                                                                                                                                                                                                                                                                          |
|                                                                   |                                                                                                                                                                                                                                                                          |
| Refer to the                                                      | e attached AEE                                                                                                                                                                                                                                                           |
| Refer to the                                                      |                                                                                                                                                                                                                                                                          |
| Refer to the  How will the failure, and remedied?                 | e attached AEE  ne equipment controlling the discharge be operated and maintained to prevent equipment controlling the discharge be operated and maintained to prevent equipment.                                                                                        |
| Refer to the                                                      | e attached AEE  ne equipment controlling the discharge be operated and maintained to prevent equipment controlling the discharge be operated and maintained to prevent equipment.                                                                                        |
| Refer to the  How will the failure, and remedied?                 | e attached AEE  ne equipment controlling the discharge be operated and maintained to prevent equipment controlling the discharge be operated and maintained to prevent equipment.                                                                                        |
| Refer to the  How will the failure, and remedied?                 | e attached AEE  ne equipment controlling the discharge be operated and maintained to prevent equipment controlling the discharge be operated and maintained to prevent equipment.                                                                                        |
| Refer to the  How will the failure, and remedied?                 | e attached AEE  ne equipment controlling the discharge be operated and maintained to prevent equipment controlling the discharge be operated and maintained to prevent equipment.                                                                                        |
| How will the failure, and remedied?                               | ne equipment controlling the discharge be operated and maintained to prevent equipment what measures will be implemented to ensure that the effects of any malfunction                                                                                                   |
| How will the failure, and remedied?  N/A  What, if an any adverse | e attached AEE  ne equipment controlling the discharge be operated and maintained to prevent equipment what measures will be implemented to ensure that the effects of any malfunction of the propose to carry out to ensure that the discharge does not effect?         |
| How will the failure, and remedied?  N/A  What, if an any adverse | e attached AEE  ne equipment controlling the discharge be operated and maintained to prevent equipment what measures will be implemented to ensure that the effects of any malfunction of the propose to carry out to ensure that the discharge does not be attached AEE |

CONSENT FORM NO. 7. Page 3.



OTAGO REGIONAL COUNCIL

CONSENT FOR THE TREATMENT AND ERADICATION OF INVASIVE NON-INDIGENOUS MARINE SPECIES WITHIN THE COASTAL MARINE AREA

Resource Consent Application and Assessment of Environmental Effects

19 May 2025

#### **TABLE OF CONTENTS**

#### **Part A: Resource Consent Application**

#### **Part B: Assessment of Environmental Effects**

| 1. | Introdu | uction                                                                                                  | _ '     |
|----|---------|---------------------------------------------------------------------------------------------------------|---------|
|    | 1.1     | Overview of Proposal                                                                                    | ,       |
|    | 1.2     | Biofouling Treatment Process                                                                            |         |
|    | 1.3     | Background                                                                                              |         |
|    | 1.4     | Sabella                                                                                                 | 2       |
|    | 1.5     | Invasion Pathways                                                                                       | Ę       |
|    | 1.6     | Report Structure                                                                                        | Ę       |
| 2. | Existin | g Environment                                                                                           | _ 6     |
| 3. | Descri  | ption of the Proposed Activity                                                                          | _ 8     |
|    | 3.1     | Treatment Method                                                                                        | 8       |
|    | 3.2     | Use of Biocides                                                                                         | 10      |
|    | 3.3     | Dosing                                                                                                  | 10      |
|    | 3.4     | Pre-Release Treatment                                                                                   | 1       |
|    | 3.5     | Summary                                                                                                 | 1       |
| 4. | Resou   | rce Consents Required                                                                                   | _ 11    |
|    | 4.1     | Regional Plan: Coast for Otago                                                                          | 12      |
|    | 4.2     | Summary                                                                                                 | 13      |
| 5. | Assess  | sment of Environmental Effects                                                                          | _ 13    |
|    | 5.1     | Positive Effects                                                                                        | 14      |
|    | 5.2     | Water Quality                                                                                           | 14      |
|    | 5.3     | Any Biological Community                                                                                | 18      |
|    | 5.4     | Amenity Value, Including any Recreational, Community, Commercial, Heritag and Cultural Uses of the Area | e<br>18 |
|    | 5.5     | A Description of the Nature, Volume, Contents and Frequency of the Propos                               | ed      |
|    |         | Discharge                                                                                               | 19      |
|    | 5.6     | A Description of the Measures to be Undertaken to Help Prevent or Reduce                                |         |
|    |         | any Actual or Potential Effects                                                                         | 19      |
|    | 5.7     | A Description of the Public Benefit to be Derived                                                       | 20      |
|    | 5.8     | An Assessment of Alternatives to the Proposed Discharge and the Reasons                                 | 2       |
| 6. | Volunt  | why the Discharge is Required in the Location Chosen  eered Conditions                                  | 2<br>21 |
| 7. |         | ltation                                                                                                 | 24      |
|    |         |                                                                                                         | _       |
| 8. | Statute | ory Considerations                                                                                      | _ 24    |
|    | 8.1     | Introduction                                                                                            | 24      |
|    | 8.2     | Duration of Consent                                                                                     | 24      |
|    | 8.3     | Section 104                                                                                             | 25      |

|     | 8.4       | Clause 1(c) – Other Relevant Matters                                                                                                           | 31   |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | 8.5       | Marine and Coastal Area (Takutai Moana) Act 2011                                                                                               | 34   |
|     | 8.6       | Section 105 of the RMA                                                                                                                         | 34   |
|     | 8.7       | Section 107 of the RMA                                                                                                                         | 35   |
|     | 8.8       | Part 2 of the RMA                                                                                                                              | 37   |
|     | 8.9       | Summary                                                                                                                                        | 37   |
| 9.  | Section 9 | 5A Public Notification                                                                                                                         | _ 38 |
|     | 9.1       | Section 95B Limited Notification                                                                                                               | 39   |
|     | 9.2       | Section 95E Assessment of Effects on Persons                                                                                                   | 39   |
|     | 9.3       | Notification                                                                                                                                   | 39   |
| 10. | Concludi  | ng Statement                                                                                                                                   | _ 40 |
|     |           |                                                                                                                                                |      |
|     | LIST O    | FFIGURES                                                                                                                                       |      |
|     | Figure 1: | Mediterranean fanworm (Sabella spallanzanii) (Northland Regional Council).                                                                     | 3    |
|     | Figure 2: | Sabella on a boat hull photo: Hamish Lass (Bay of Plenty Regional Council).                                                                    | 3    |
|     | Figure 3: | Sabella on mussel lines: Kathy Walls (Ministry for Primary Industries)                                                                         | 4    |
|     | Figure 4: | Proposed treatment areas                                                                                                                       | 7    |
|     | Figure 5: | Examples of encapsulation using a floating dock and a plastic sheet (photo credits: Matt Smith, NIWA and Bruce Lines, Diving Services NZ Ltd). | 9    |
|     | Figure 6: | Example of encapsulation using a plastic sheet (Taronui Bay, Northland, 2022                                                                   | ) 9  |
|     | LIST O    | F TABLES                                                                                                                                       |      |
|     | Table 1:  | Regional Coastal Plan Rules Assessment                                                                                                         | 12   |
|     |           |                                                                                                                                                |      |

Regional Coastal Plan values for each application area

18

Table 2:

#### **LIST OF APPENDICES**

Appendix A: Location Maps

Appendix B: Cawthron Institute assessment report

Appendix C: Materials Safety Data Sheet for Dichlor

Appendix D: Dichlor dosing Table

Appendix E: Sodium thiosulphate dosing Table

Appendix F: Consultation Summary

Appendix G: Marine and Coastal Areas Act – notice of application

#### REPORT INFORMATION

| Report Status  | Final             |
|----------------|-------------------|
| Our Reference  | MDL002804         |
| Author         | Jennifer Rose     |
| Review By      | Kirsty O'Sullivan |
| Version Number | 01                |
| Version Date   | 19 May 2025       |

#### © Mitchell Daysh Limited (2025).

This report has been prepared by Mitchell Daysh Ltd on the specific instructions of our Client. It is solely for our Client's use for the purpose for which it is intended in accordance with the agreed scope of work. Any use or reliance by a third party is at that person's own risk. No liability or responsibility is accepted by Mitchell Daysh Ltd for any errors or omissions to the extent that they arise from inaccurate information provided by the Client or any external source.



## **PART A**

**Resource Consent Application** 

#### FORM 9

#### APPLICATION FOR RESOURCE CONSENT

Sections 87AAC, 88, and 145, Resource Management Act 1991

To Otago Regional Council
Private Bag 1954
Dunedin, 9054

#### 1. Otago Regional Council applies for the following type of resource consent:

A coastal permit for the discharge of contaminants into the coastal marine area associated with the treatment and eradication of invasive non-indigenous marine species including Mediterranean fanworm (Sabella Spallanzani – "Sabella").

#### 2. The activity to which the application relates (the proposed activity) is as follows:

Invasive non-indigenous marine species have the potential to severely damage marine ecosystems by outcompeting native species for food and space. The damage caused by invasive non-indigenous marine species can have a devastating impact on marine biodiversity, natural resources, marine industries, water quality and mahinga kai. For this reason, the Otago Regional Council seeks a consent to discharge contaminants into the coastal marine area associated with the treatment and eradication of invasive non-indigenous marine species.

#### 3. The site at which the proposed activity is to occur is as follows:

The areas of the coastal marine area shown in the maps included in Appendix A to this application.

- 4. There are no other activities that are part of the proposal to which this application relates.
- No additional resource consents are needed for the proposal to which this application relates.

- 6. I attach an assessment of the proposed activity's effect on the environment that—
  - (a) includes the information required by clause 6 of Schedule 4 of the Resource Management Act 1991; and
  - (b) addresses the matters specified in clause 7 of Schedule 4 of the Resource Management Act 1991; and
  - (c) includes such detail as corresponds with the scale and significance of the effects that the activity may have on the environment.
- I attach an assessment of the proposed activity against the matters set out in Part 2 of the Resource Management Act 1991.
- 8. I attach an assessment of the proposed activity against any relevant provisions of a document referred to in section 104(1)(b) of the Resource Management Act 1991, including the information required by clause 2(2) of Schedule 4 of that Act.
- I attach the following further information required to be included in this application by the district plan, the regional plan, the Resource Management Act 1991, or any regulations made under that Act.
  - > The Assessment of Environmental Effects
  - Cawthron Institute: Report No.2715: Addition of Biocide during Vessel Biofouling
     Treatment An Assessment of Environmental Effects; July 2015
  - > Materials Safety Data Sheet
  - > Dichlor and Sodium thiosulphate dosing tables
  - > Consultation information

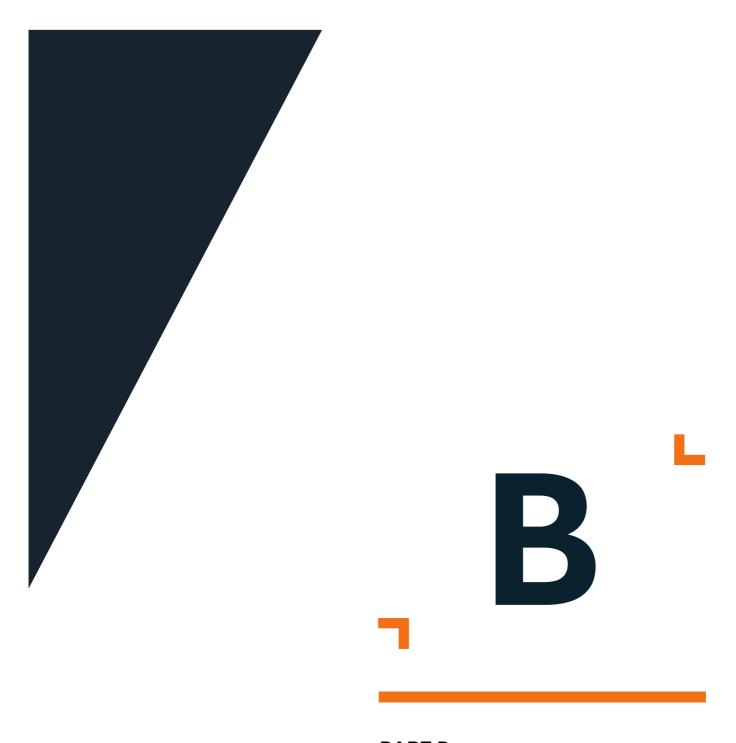


Signature:

(person authorised to sign on behalf of applicant)

Date: 19 May 2025

Address for Service: Otago Regional Council


C / - Mitchell Daysh Limited

PO Box 489 Dunedin 9054

Contact: Jennifer Rose

Mobile:

Email: jennifer.rose@mitchelldaysh.co.nz



**PART B** 

Assessment of Environmental Effects

#### 1. INTRODUCTION

#### 1.1 OVERVIEW OF PROPOSAL

A key role of the Otago Regional Council ("**ORC**") is to ensure the coastal marine area ("**CMA**") is sustainably managed. For this reason, it seeks a resource consent to discharge contaminants into the CMA associated with the treatment and eradication of invasive non-indigenous marine species.<sup>1</sup>

Invasive non-indigenous marine species pose a significant threat to Otago's coastal environment and aquaculture industry. They pose a serious threat to native biodiversity and can have significant economic impacts. For example, the Mediterranean fanworm (Sabella spallanzanii – "Sabella") is an invasive marine species which has recently been discovered at Port Chalmers in Otago. Sabella poses a serious threat to the marine environment and needs to be treated and eradicated.

#### 1.2 BIOFOULING TREATMENT PROCESS

Biofouling is the accumulation of marine pests and invasive species (such as Sabella), microorganisms, plants, and algae on vessel hulls and other hard surfaces. The process for treating biofouling involves encapsulation, with the addition of a biocide (chlorine solution) to the encapsulated water. Encapsulation kills biofouling either by restricting the exchange of water, leading to deoxygenation as fouling organisms respire, or by enclosing organisms with an added biocide.

#### 1.3 BACKGROUND

New Zealand has one of the largest exclusive economic zones ("**EEZ**") in the world² with a diverse range of coastal and marine environments, habitats, and species. New Zealand's unique marine environment is central to its economy, wellbeing, recreation, and for gathering kai moana. For some Māori, the marine environment is central to tikanga Māori (customs and protocols) and mātauranga Māori (Māori knowledge). However, the marine environment is under pressure from climate change and degradation from activities on the land and at sea, including the ongoing introduction of non-indigenous species which pose a continued risk to New Zealand's biodiversity.

<sup>&</sup>lt;sup>1</sup> E.g. Sabella, clubbed tunicate, exotic caulerpa and undaria.

<sup>&</sup>lt;sup>2</sup> MfE and Stats NZ: Our Marine Environment 2022.

Among the non-indigenous and invasive marine species already established in New Zealand are species of seaweed and other algae (from large to microscopic); crabs, barnacles and other crustaceans; coral-like bryozoans; tube worms; sea squirts; and oysters, mussels and other molluscs. Some of these invasive marine species grow more prolifically in New Zealand than in their place of origin.

By 1998 around 150 species of non-indgenous marine organisms had been identified in New Zealand waters, of which 127 had become established. Not all are considered pests, but by 2002, 16 had become a serious and expensive nuisance.<sup>3</sup> The majority are thought to have arrived on ships' hulls. The Waitematā Harbour, home to the port of Auckland, has 60 such species, the highest concentration in the country.

Non-indigenous invasive marine species can have a variety of negative effects. Many species are more aggressive or competitive than native counterparts, which they displace. They may cause changes to important features of the habitat, such as kelp forests and sea-grass meadows, and to the functioning of an ecosystem as a whole. There can also be a major impact on economic and recreational activities such as fishing and swimming.

Some invasive species grow so prolifically that they clog up – or foul – every surface. Known as fouling species, they block shallow waterways and economically important facilities such as water intakes and outlets, and they cover boat hulls, wharf piers and aquaculture equipment.

#### 1.4 SABELLA

Sabella is just one example of a hull fouling organism that is posing an immediate risk to Otago's coastline. Sabella is native to the Mediterranean Sea and parts of the North-Eastern Atlantic coast. It is a large worm that has a long, leathery tube that is pale brown in colour. The tube is usually fixed to a hard surface and grows up to 100cm in length.

Sabella has long filaments at the top of the tube that look like a spiral fan, which are either orange, purple or white and banded. Sabella is shown in Figure 1, Figure 2 and Figure 3.

\_\_\_

Ministry for the Environment & Stats NZ (2022). New Zealand's Environmental Reporting Series: Our marine environment 2022.



Figure 1: Mediterranean fanworm (Sabella spallanzanii) (Northland Regional Council).



Figure 2: Sabella on a boat hull photo: Hamish Lass (Bay of Plenty Regional Council).



Figure 3: Sabella on mussel lines: Kathy Walls (Ministry for Primary Industries)

Sabella can outcompete native species, including filter-feeding organisms, for food and space and can threaten commercially and culturally important kaimoana species like kuku/kūtai (mussels), tio (oysters), and tipa/tupa (scallops).

Sabella was first detected in 2008 in Whakaraupō Lyttelton Harbour. Since then, it has spread to both the top of the North Island and South Island and has been recently detected in the Otago Harbour.

In 2019 at Port Chalmers there were a small number of Mediterranean fanworms detected and removed following a survey. In August 2024 Sabella was found at the Multipurpose Wharf in Port Chalmers during winter surveillance carried out by National Institute of Water and Atmospheric Research ("NIWA") staff.

Environment Canterbury has also recently detected Sabella at new sites in Whakaraupō Lyttleton Harbour.

These recent findings underline the continued risk of reintroduction of this marine species, as well as other hull fouling organisms, especially in areas with a high level of vessel traffic.

#### 1.5 INVASION PATHWAYS

Hull fouling organisms (such as Sabella) spread to new locations primarily within vessel biofouling, although the movement of aquaculture equipment or other marine structures may also contribute to its spread. The organisms are usually introduced into the environment on ships, either attached to the submerged surfaces of ships (biofouling) or in the ballast water carried by large vessels to maintain stability. It is therefore critical for the ORC to be able to respond quickly to marine pest incursions in areas with high levels of vessel traffic and prevent the spread of these invasive marine organisms into other more vulnerable areas of the CMA.

#### 1.6 REPORT STRUCTURE

This Assessment of Environmental Effects ("**AEE**") has been prepared to accompany the resource consent application by ORC (as applicant) to Otago Regional Council (as consent authority) for the proposed discharge of contaminants into the CMA associated with the treatment and eradication of invasive non-indigenous marine species.

This AEE is complies with the relevant requirements in Schedule 4 of the Resource Management Act 1991 ("RMA" or "the Act") and addresses the relevant matters in the Regional Plan: Coast for Otago ("Regional Coastal Plan").

This AEE comprises ten sections as follows:

- **Section 1:** This introduction, which provides background to the resource consent application being made by ORC, as well as the rationale for the proposal.
- **Section 2:** Provides a description of the project area and surrounding environment within which the activity will occur.
- **Section 3:** Provides a description of the activities for which consent is sought.
- **Section 4:** Sets out the resource consent requirements under the relevant statutory planning documents.
- **Section 5:** Provides an assessment of the actual and potential environmental effects associated with the discharges.
- **Section 6:** Provides a draft set of volunteered conditions.
- **Section 7:** Outlines the consultation that has been undertaken by ORC.

**Section 8:** Sets out the statutory framework against which the resource consent application

has been made and assesses the proposal in relation to the provisions of the

RMA and the relevant provisions of the statutory planning documents

administered by the Otago Regional Council.

Section 9: Addresses the notification requirements in accordance with section 95A – 95E of

the RMA.

**Section 10:** Provides a short concluding statement.

#### 2. EXISTING ENVIRONMENT

The applicant seeks a consent that can be implemented in those areas of the CMA where invasive non-indigenous marine species are most likely to be found.

These areas include Karitane, Taieri Mouth, Otago harbour, Oamaru harbour and Moreaki as shown in Figure 4.

Maps showing each of the potential treatment areas are included in **Appendix A**.

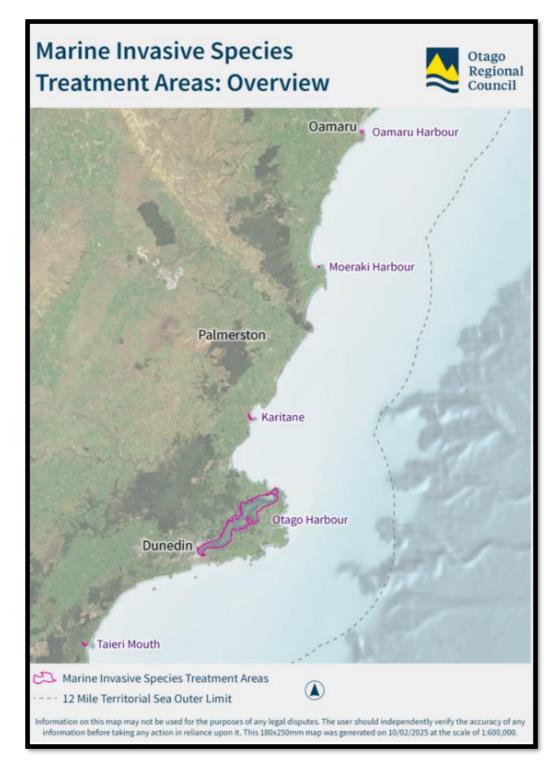



Figure 4: Proposed treatment areas

#### 3. DESCRIPTION OF THE PROPOSED ACTIVITY

The following section of the AEE provides an overview of the proposed treatment method and use of biocide, as informed by the recommendations made in the assessment of environmental effects prepared by the Cawthron Institute for the addition of biocide during vessel biofouling treatment<sup>4</sup> (Appendix B).

#### 3.1 TREATMENT METHOD

To treat biofouling, the Council proposes to encapsulate the affected hard surface and add a chlorine solution to the volume of water trapped between the hard surface and the encapsulating material. This method has been found to be effective for eliminating the biosecurity risk posed by biofouling.

Encapsulation may be achieved by several methods, including (but not limited) to the following:

- 1. Divers wrapping hulls with strips of plastic sheeting, similar to silage wrap (0.75m × 1,500m × 25 μm). Strips overlap and are sealed with waterproof tape. It may be difficult to create a seal that prevents an exchange with the surrounding water, particularly if the hull shape is complex and/or has protrusions (such as keels and stabilisers). The volume of water encapsulated using this method may be small compared with other methods of encapsulation, particularly if the shape of the hull is simple and the wrap is tightly applied.
- 2. Enclosing the hull in a flat, plastic sheet that is passed under the hull and then secured on all sides above the water line (either to the superstructure of the boat, or to the adjacent berth). The boat sits in this 'bag' in a volume of water that depends on the size of the sheet. Other options include using silage covers (6–15 m × 300 m × 150 μm). These specifically designed systems are made of material that is resistant to cutting, tearing and abrasion and are fitted with floatation collars and ballast chains. They are towed into position around the hull from a support vessel. Divers are not necessarily required for deployment.
- 3. Enclosing the boat or hard structure in a commercially available, purpose-built floating dock. The dock consists of an inflatable 'collar' supporting an impermeable bag. Part of the collar (the 'gate') is deflated and lowered to allow the boat to enter the dock. The collar is then re-inflated to create a rim around the dock above water-level. This prevents water and any biofouling material dislodged from the hull from escaping.

Methods two and three are illustrated in Figure 5 and method two is shown in Figure 6.

\_-

Cawthron Institute: Report no. 2715: Addition of biocide during vessel biofouling treatment – an assessment of environmental effects.



Figure 5: Examples of encapsulation using a floating dock and a plastic sheet (photo credits: Matt Smith, NIWA and Bruce Lines, Diving Services NZ Ltd).



Figure 6: Example of encapsulation using a plastic sheet (Taronui Bay, Northland, 2022)

Once the boat or other marine structure has been enclosed, encapsulated water may be pumped out to increase the rate of deoxygenation or to reduce the volume of biocide that must be added to achieve the target treatment concentration. In the case of floating docks, the floor of the dock may be fitted with ribs that can be inflated while the gate is open, expelling excess

water from around the boat. Some docks also have a pump installed at floor level inside the dock. However, there is an optimal volume of water that must be encapsulated to ensure that biofouling organisms are exposed to oxygen depletion or sufficient concentrations of biocide.

#### 3.2 **USE OF BIOCIDES**

Field and laboratory studies suggest that the likelihood of success of encapsulation in treating biofouling is increased, and the treatment time greatly reduced, by adding a biocide to the encapsulated water. Rapid treatment is important, firstly to reduce the risk of biofouling spreading to other areas, and because the inconvenience and cost of voyage delays (associated with a treatment process that involves encapsulation only) may act as a disincentive to treatment.

Of the potentially suitable biocides, the Council has elected to use a chlorine solution for the purpose of treating biofouling, based on its demonstrated effectiveness, ease of use, health and safety considerations and low environmental effects.

Chlorine has been proven to be successful in the treatment of larger vessels and barges and in the treatment of heavy biofouling, including large numbers of Sabella on the hull of an 8 m long yacht using encapsulation in Auckland's Westhaven Marina.

Chlorine has a low acute toxicity, and a single dosing of 200 mg/L of chlorine has been proven to be effective in killing all biofouling after 16 h exposure, including Sabella, oysters and mussels. Supporting laboratory studies demonstrated that a 4-h exposure of Sabella spallanzanii (in their tubes) to this concentration killed more than 99% of adult worms and is therefore the preferred treatment regime for this species. On this basis, the Council has chosen to use a chlorine solution as a biocide in combination with encapsulation for the treatment of invasive nonindigenous marine species.

#### **DOSING** 3.3

The initial target concentration of chlorine will be 200 mg/L which will be maintained for at least 4 hours. Maintaining this concentration will require monitoring of Free Available Chlorine ("FAC")<sup>6</sup> concentration and periodic redosing.

The safest and most convenient method of creating the chlorine solution is to dissolve dichlor granules in seawater before adding it to the encapsulated water. The Materials Safety Data

A 4-hour treatment duration is used in the worked example provided by the Cawthron Institute: Refer Report No. 2715 "Addition of Biocide during vessel biofouling treatment – An Assessment of Environmental Effects"; section 8.1.3.

Free available chlorine, composed of hypochlorous acid (HOCl) and the hypochlorite ion (OCl-).

Sheet ("MSDS") for dichlor is attached in Appendix C. The table that is used to calculate the amount (kg) of dichlor required for dosing encapsulated water is included in Appendix D. During the treatment, chlorine testing strips (designed for testing swimming pool water) may be used for convenient measurement of chlorine concentrations in the ranges of, for example, 0.5–10 mg/L and 0–600 mg/L.

Additional dichlor may be added if necessary to maintain the target concentration over the treatment period.

#### 3.4 PRE-RELEASE TREATMENT

At the end of the treatment, residual chlorine may be treated with a non-toxic neutralising agent (Sodium thiosulphate) prior to discharge to ensure the concentration of residual chlorine is 0.5 mg/L or less. The table that is used to calculate the amount (g) of sodium thiosulphate required to neutralise the encapsulated water (i.e. reduce the concentration of residual chlorine to less than 0.5 mg/L) is included in **Appendix E**.

Alternatively, the residual chlorine may be neutralised by extending the treatment period to allow natural degradation of chlorine by reaction with organic matter and volatilization.

When the treatment process is completed, the wrapping material (or floating dock) will be removed (or deflated), and the encapsulated water contained within it will be discharged into the surrounding environment. The encapsulated water will contain residual chlorine (not more than 0.5 mg/L),<sup>7</sup> and it may also contain low levels of residual cyanuric acid, dissolved oxygen, dissolved sulphides and organic matter.<sup>8</sup>

#### 3.5 SUMMARY

Based on its demonstrated effectiveness, ease of use, health and safety considerations and limited adverse environmental effects, the Council has chosen to use a chlorine solution as a biocide in combination with encapsulation for the treatment of invasive non-indigenous marine species.

#### 4. RESOURCE CONSENTS REQUIRED

The discharge of treated sea water containing residual chlorine, as a solution of sodium dichloroisocyanurate (dichlor), and sodium thiosulphate (as a neutralizing agent), as well as the

\_-

<sup>&</sup>lt;sup>7</sup> Refer to Sections 5.2 and 5.6 of the AEE.

In the context of this resource consent application, the organic matter is deemed to be a contaminant, as it will contain micro-organisms that may cause a reduction in DO in the water body around the treatment area or on the seabed beneath.

emission of residual cyanuric acid, dissolved oxygen, dissolved sulphides and organic matter into the CMA following the treatment process described in section 3 of this AEE requires a resource consent in accordance with the rules contained in Chapter 10 of the Regional Coastal Plan.

#### 4.1 REGIONAL PLAN: COAST FOR OTAGO

The purpose of the Regional Coastal Plan is to provide a framework for the integrated and sustainable management of Otago's coastal marine area. Chapter 10 of the Regional Coastal Plan sets out the rules for discharges. The rules of relevance to this proposal are summarised in Table 1.

Table 1: Regional Coastal Plan Rules Assessment

| Rule     | Standard                                                                                                                               | Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.5.6.2 | Except as provided for by 10.5.6.1, the discharge of water or contaminants into the coastal marine area is a discretionary activity.   | The activity involves the discharge of treated water containing contaminants into the CMA following the treatment of biofouling. The contaminants include low levels of residual chlorine, residual cyanuric acid, dissolved oxygen, organic matter and dissolved sulphides. The discharge is not provided for as a permitted activity by Rules 10.5.1.1 through to 10.5.5.8 or Rule 10.5.6.1. As such, resource consent (Coastal Permit) is required for a discretionary activity in accordance with Rule 10.5.6.2.        |
| 10.5.5.8 | Except as provided for by 10.5.5.4 to 10.5.5.7 the use of hazardous substances in the coastal marine area is a discretionary activity. | Chlorine is a hazardous substance <sup>9</sup> as per the meaning given in the Regional Coastal Plan. The use of a hazardous substance in the CMA is not provided for as a permitted activity by Rule 10.5.5.4 (as it will enter the water of the CMA); and it is not provided for as a permitted activity in accordance with Rule 10.5.5.7 (as it is not associated with the refuelling of ships). As such, a resource consent (Coastal Permit) is required for a discretionary activity in accordance with Rule 10.5.5.8. |

Hazardous substance means Any substance: (a) Explosiveness; With one or more of the following intrinsic properties: (i) (ii) (iii) Flammability; A capacity to oxidise; (iv) Corrosiveness; (v) Toxicity, (including chronic toxicity); (vi) Ecotoxicity, with or without bioaccumulation; or (b) Which on contact with air or water (other than air or water where the temperature or pressure has been artificially increased or decreased) generates a substance with any one or more of the properties specified in paragraph (a) of this definition.

| Rule     | Standard                                                                                                                                                          | Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.5.5.1 | The following activities are prohibited activities in Otago's coastal marine area: (a) the storage, use or discharge of hazardous waste, including nuclear waste. | The Regional Coastal Plan defines hazardous waste as:  (a) A hazardous substance which has not been used and requires disposal; or  (b) The residue of a hazardous substance which has been used and requires disposal; or  (c) Waste material containing a hazardous substance.  The activity involves the discharge of treated water containing contaminants (primarily residual chlorine) into the CMA following the treatment of biofouling. The water is not considered to be hazardous waste as per the meaning given in the Regional Coastal Plan. Rather, chlorine is a hazardous substance which is proposed to be used in the treatment of biofouling. Following the treatment process, the residual chlorine (within the encapsulated water) will be neutralised, either by extending the treatment period or by adding a non-toxic neutralising agent (Sodium thiosulphate) prior to discharge (so that the residual chlorine does not exceed 0.5 mg/L). In other parts of NZ these discharges would be a permitted activity. Chlorine is not itself a hazardous waste or the residue of hazardous waste. Rather it is a hazardous substance which is intended to be used specifically for the treatment of biofouling. As such, the discharge is not prohibited by Rule 10.5.5.1 of the Coastal Regional Plan. |
|          |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### 4.2 SUMMARY

Resource consent is required in accordance with Chapter 10 of the Regional Coastal Plan for the use of a hazardous substance in the CMA and the discharge of water containing contaminants into the CMA as a **discretionary activity**, in accordance with Rules 10.5.5.8 and 10.5.6.2 of the Regional Coastal Plan. These activities can be provided for within a single Coastal Permit.

#### 5. ASSESSMENT OF ENVIRONMENTAL EFFECTS

This section of the AEE addresses the actual and potential environmental effects associated with the proposal.

The effects assessment has been principally informed by the assessment of environmental effects prepared by the Cawthron Institute for the addition of biocide during vessel biofouling treatment<sup>10</sup> (**Appendix B**), the policy context and information requirements provided in the relevant section of the Regional Coastal Plan.

#### 5.1 POSITIVE EFFECTS

Encapsulation with the addition of a biocide will provide the ORC with a rapid, cost-effective method for treating the fouled hulls of vessels and other hard surfaces posing a high biosecurity risk. Treatment can be done on a vessel's arrival, to reduce the risk of introduction of pest species, before departure, to reduce the risk of spread to new areas or at any time where invasive non-indigenous pest species have been detected.

Marine pests can significantly impact the region's values. Despite considerable effort to manage the pathways that introduce or facilitate the spread of marine pests, high-risk vessels continue to arrive into Otago from overseas, or from other parts of New Zealand. The vessels also travel around Otago's coastline, and as such the risks associated with the spread of biofouling into vulnerable areas of the CMA must be managed.

The treatment and eradication of invasive non-indigenous marine species will have significant positive effects. For example, without treatment, Sabella can form dense colonies of up to 1000 individuals per square metre that will exclude the settlement of other organisms. Sabella also has a high filtering ability that may influence the composition of planktonic communities and abundance of some species. The presence of Sabella in areas where mussels or oysters are located may also affect their growth due to competition for food.

If left untreated, biofouling can become established and spread into new habitats where it could significantly affect the native ecological communities and cause significant economic impacts. It is a competitor to native fauna, can interfere with biological processes, clog fishing gear and dredges and impact on the mauri of the moana. For these reasons the treatment and eradication of biofouling is considered to have significantly positive effects.

#### 5.2 WATER QUALITY

The encapsulated water (with added biocide) will be treated prior to discharge so that the actual and potential effects of the discharges on water quality, although expected to be small, are further mitigated (refer section 3.4).

\_-

Cawthron Institute: Report no. 2715: Addition of biocide during vessel biofouling treatment – an assessment of environmental effects.

Based on the trial with the floating dock in Westhaven Marina (Auckland), residual concentrations of chlorine after overnight encapsulation (without re-dosing) may be in the order of 1–10 mg/L. This is substantially higher than the guideline values for the protection of aquatic life. For example, the ANZECC (2000) chronic trigger value is 3  $\mu$ g/L, and the US EPA (2014) aquatic life acute value 13  $\mu$ g/L (note that these refer to total residual chlorine, of which FAC is a component). The World Health Organisation's guideline for FAC in drinking water is 5 mg/L.<sup>11</sup>

There are three options for reducing the residual chlorine concentrations prior to discharge of the encapsulated water:

- i. containing the water for longer to allow natural degradation of FAC;
- ii. neutralisation of FAC using a chemical agent; and
- iii. dilution by mixing with ambient water.

Each of these three options is considered below.

#### 5.2.1 Natural degradation of free available chlorine

The simplest method to reduce residual chlorine concentrations is to extend the period of treatment until measured concentrations reach guideline values. Chlorine solution will be consumed by reaction with organic matter, is volatilised and will also be degraded by UV light (though this is reduced in the presence of stabilising cyanuric acid in dichlor).

However, this method is not likely to be satisfactory in most situations because it involves delays and makes the encapsulation equipment unavailable for the treatment of other vessels or structures. Prolonged encapsulation may also result in reduced Dissolved Oxygen and increased sulphide concentrations. As a compromise, retaining the encapsulated water for 4 h after the last re-dosing would allow FAC concentration to degrade to ca 50 mg/L, reducing the amount of thiosulphate needed to neutralise it.

#### 5.2.2 Neutralisation of free available chlorine using a chemical agent

A faster alternative to natural degradation of residual FAC is to add a neutralizing agent, such as:

- > sodium thiosulphate (Na2S2O3).
- > sodium sulphite (Na2SO3).
- > sodium bisulphite (NaHSO3).
- > sodium metabisulphite (Na2S2O5).

\_-

World Health Organization: Guidelines for Drinking-water Quality, Fourth edition.

- > calcium thiosulphate (CaS2O3).
- > ascorbic acid (vitamin C) or sodium ascorbate (vitamin C).

Most of these chemicals have an acute toxicity class listed on their MSDS and therefore carry an environmental risk. The exceptions are sodium thiosulphate and ascorbic acid/sodium ascorbate.

Sodium thiosulphate is recommended as a neutralising agent because it is not classified as a hazardous substance and is of relatively low toxicity (96 h LC50 24,000 mg/L for mosquito fish compared with 660 mg/L for sodium sulphite). It also scavenges less oxygen than the other sodium compounds listed above. The MSDS for sodium thiosulphate is attached in **Appendix C**.

Sodium thiosulphate is available in bulk from sellers of swimming pool supplies and is suggested for the dechlorination of swimming-pool water before discharge to the stormwater system.

In addition to scavenging Dissolved Oxygen ("**DO**"), sodium thiosulphate forms hydrochloric acid as a result of the neutralisation reaction (as do the other chemicals listed above, other than ascorbic acid / sodium ascorbate). Therefore, the minimum amount of thiosulphate required to neutralise residual FAC should be used. This can be estimated based on residual FAC concentration and the volume of encapsulated water.

#### 5.2.3 Dilution by mixing with ambient water

Following the addition of sodium thiosulphate, any chlorine that might remain in the encapsulated water (due to incomplete mixing or underestimating the concentration of residual chlorine or the volume of water) will be rapidly diluted by the surrounding water. Other chemical differences between the encapsulated water and the surrounding water body will also be mitigated by dilution. These may include residual cyanuric acid (from the dichlor), altered pH and DO.

Dilution may be enhanced by pumping water out of the encapsulation before the dock is opened or wrapping removed, giving the encapsulated water more opportunity to mix with the surrounding water body.

#### 5.2.4 Dissolved Oxygen

Reduction in DO by respiration is expected to be negligible. However, DO may be scavenged if sodium thiosulphate is added in amounts in excess of those required to neutralise residual FAC. Reduction in DO can be minimised by matching the amount of sodium thiosulphate added to the amount of FAC to be neutralised. This would be based on the measured concentration of FAC and the estimated volume of encapsulated water.

In most cases, DO concentration is expected to be > 80% and dilution by the surrounding water body is likely to be sufficient mitigation. The likelihood of adverse environmental effects will be further reduced as the treatment of biofouling will not occur close to sensitive habitats. Rather, the treatment of biofouling will be undertaken in thoseareas of the CMA with high levels of vessel traffic (e.g. marinas, ports and jetties) as shown in **Appendix A**.

If the measured concentration of DO in the encapsulated water is less than 80% of saturation (or 6 mg/L), this may be mitigated prior to release by active mixing (stirring) or by pumping the water out and allowing it to fall through air back into the surrounding water.

Discharge during the flowing tide will also enhance dilution and dispersal.

#### 5.2.5 Potential of Hydrogen

Dilution and buffering by the surrounding water body is expected to provide sufficient mitigation for any differences in potential of Hydrogen ("**pH**"). This can be optimised by releasing encapsulated water during periods of (tidal) current flow and / or by pumping out of the dock to maximise dispersion.

#### 5.2.6 Organic matter

The encapsulated water may also contain some organic matter (the biofouling material that falls off the surface following treatment). Unless it is captured, this dead organic material will be dispersed into the water column or the seafloor when the wrapping material is removed (or the dock is deflated). At this stage in the process the biofouling material is dead and cannot reestablish on the seafloor. Organic matter derived from biofouling may cause a reduction in DO in the water body around the treatment area or on the seabed beneath. To mitigate this, the release of large amounts of organic material will be avoided by collecting and removing the organic matter where practicable (although this is unlikely to be necessary for most encapsulation treatments).

When the hard surface is encapsulated using plastic strips or sheets that are not intended for reuse, the wrapping and organic waste can be removed together and sent for disposal to land or recycling. Where a floating dock or reusable sheet is used, if feasible any conspicuous amounts of organic waste will be collected as the wrapping is removed from the hard surface and disposed of to land. This can be done, for example, by divers using hand-nets.

Otherwise, small amounts of residual organic waste may be released into the water during periods of (tidal) current flow, to maximise dispersion.

#### 5.3 ANY BIOLOGICAL COMMUNITY

The potential treatment areas already have relatively modified habitats and biological communities. Further, the treatment process is limited to a confined area surrounding the hard surface and is therefore spatially limited. The treatments are also undertaken in areas with a high degree of tidal flushing, and during periods of tidal flow, which mitigates the significance of any effects of biofouling treatment on the surrounding environment.

## 5.4 AMENITY VALUE, INCLUDING ANY RECREATIONAL, COMMUNITY, COMMERCIAL, HERITAGE AND CULTURAL USES OF THE AREA

As detailed above, invasive non-indigenous marine species are typically first found in harbours and in areas with high levels of vessel traffic.

On this basis, the applicant is applying for resource consent to undertake biofouling in Karitane, Taieri, Otago Harbour, Oamaru Harbour and Moreaki (in the locations shown in **Appendix A**). These areas are identified in Schedule 2 of the Regional Coastal Plan, either as coastal protection areas ("CPA"), Coastal Recreation Areas ("CRA") coastal harbourside areas ("CHA") or Coastal Development Areas ("CDA"). Section 5.1 of the Regional Coastal Plan describes how the different values associated with these areas are recognised in the management of Otago's coastal resources. The Regional Coastal Plan values for each of the locations subject to this resource consent application are identified in Table 2.

Table 2: Regional Coastal Plan values for each application area

| Location      | СРА                     | CRA  | CDA  | СНА          |
|---------------|-------------------------|------|------|--------------|
| Karitane      | CPA8                    | Х    | CDA3 | CHA2         |
| Taieri        | X                       | Х    | CDA5 | Х            |
| Otago Harbour | CPA15<br>CPA16<br>CPA17 | CRA9 | CDA4 | CHA5<br>CHA6 |
| Oamaru        | CPA1                    | Х    | CDA1 | X            |
| Moreaki       | X                       | CRA3 | CDA2 | X            |

Each of these areas has biological, physical, cultural and / or recreational values. However, it is also recognised that these areas are not necessarily pristine, and that they have already been developed to varying degrees.

If left untreated, invasive marine species could become established, and spread, outcompeting native species, including filter-feeding organisms, threaten commercially and culturally important kaimoana species like kuku/kūtai (mussels), tio (oysters), and tipa/tupa (scallops). In this respect, the treatment of biofouling will have positive effects in respect of the recreational, community, commercial, heritage and cultural values of the CMA.

### 5.5 A DESCRIPTION OF THE NATURE, VOLUME, CONTENTS AND FREQUENCY OF THE PROPOSED DISCHARGE

The nature, volume and contents of the discharge are described in earlier sections of this report. In terms of frequency of the proposed discharges, this will be dependent on the extent and number of occasions where invasive non- indigenous marine species are encountered, and treatment of the biosecurity risk is required. However, early treatment reduces the overall need for repeated or more widespread applications. Additionally, the proposed treatment method is a single treatment process, with minimal environmental impact and is currently the only tested approach for removing heavy biofouling in water. The proposed treatment methodology allows the ORC to treat permanent structures and other hard surfaces that can't otherwise be removed from the CMA (such as jetties and wharves).

## 5.6 A DESCRIPTION OF THE MEASURES TO BE UNDERTAKEN TO HELP PREVENT OR REDUCE ANY ACTUAL OR POTENTIAL EFFECTS

To mitigate the effects of the discharges on the environment, the ORC is proposing to treat the encapsulated water (using sodium thiosulphate) prior to discharge. In the Tasman district, the discharge of water into coastal waters is permitted if the concentration of FAC is less than 0.5 mg/L<sup>13</sup> (there is no equivalent permitted activity standard in Otago).

Northland Regional Council holds a resource consent<sup>14</sup> to discharge contaminants associated with the control and eradication of invasive marine pests using a floating pontoon or benthic mats and the application of chlorine as a biocide.

Condition 9 of this consent requires that any discharge from the pontoon or at the outer edge of the mat shall have a total residual chlorine concentration not greater than 0.2 mg/L.

Guidelines for the disposal of swimming-pool water (Western Bay of Plenty District Council) suggest that, if disposal to sewer or by soakage is not feasible, water may be discharged to the stormwater system if the FAC concentration is less than 0.5 mg/L. For comparison, the

4

<sup>&</sup>lt;sup>12</sup> See Sections 5.8, 3.3, 4, 5.2.2, 5.2.4, 5.2.5 and 5.2.6.

<sup>&</sup>lt;sup>13</sup> Tasman Resource Management Plan: Rule 36.2.2.8.

<sup>&</sup>lt;sup>14</sup> Reference 036500.01.01.

recommended concentration of FAC to protect the health of users of swimming pools is 1–3 mg/L.15

In the context of this resource consent application, it is considered appropriate for the concentration of residual chlorine in the encapsulated water to be measured prior to discharge. For consistency with the relevant permitted activity standard in Tasman, if the concentration of residual chlorine in the encapsulated water exceeds 0.5 mg/L it will be neutralised to a level of less than 0.5 mg/L before the encapsulated water is released.

As discussed in section 5.2, this may be done by extending the treatment period to allow natural degradation of chlorine by reaction with organic matter and volatilisation, or by chemical neutralisation. Neutralisation (i.e. reducing the concentration to < 0.5 mg/L) will be done using the minimum amount of sodium thiosulphate required to neutralise residual FAC.

Measurement of low concentrations of FAC (i.e. guideline concentrations) requires a test based on a colorimetric method (because the testing strips described in Section 3.3 are not sufficiently sensitive). Colorimeters for testing water in swimming pools are readily available and read FAC and TAC concentrations in the range 10 µ/L (i.e. around water-quality guidelines and equivalent to 0.01 mg/L or 10 ppb) to 5 mg/L. They can also measure cyanuric acid concentrations in the range 2-200 mg/L.

A discharge of residual chlorine of 0.5 mg/L or less is considered to have negligible environmental effects and is a permitted activity in other parts of New Zealand.

#### 5.7 A DESCRIPTION OF THE PUBLIC BENEFIT TO BE DERIVED

Once established in New Zealand, foreign marine species can have severe economic, cultural and environmental impacts on the marine environment. They can damage New Zealand's pristine beaches, unique diving and abundant fish life. Introduced marine species most commonly arrive in New Zealand waters on international vessels as biofouling (the growth on the hull and underwater fittings). Once established, they can spread and threaten marine habitats, impact the country's seafood industries, environment and the economy. For example, researchers from the National Institute of Water and Atmospheric Research Ltd (NIWA) forecast the cumulative economic impacts of two invasive biofouling species (Styela clava and Sabella) on NZ's green-lipped mussel aquaculture, considering the direct and combined economic impacts of each species on producers, and on export markets for the shellfish over 24 years. Direct impacts on producers were estimated at NZ\$23.9M (Styela clava), \$14m (Sabella), and

<sup>&</sup>lt;sup>15</sup> Centers for Disease Control and Prevention, 2013.

\$26.4m (both species combined).<sup>16</sup> As such, the proposed treatment of biofouling, including Sabella, and the discharges associated with that, are considered to have significant public benefit.

## 5.8 AN ASSESSMENT OF ALTERNATIVES TO THE PROPOSED DISCHARGE AND THE REASONS WHY THE DISCHARGE IS REQUIRED IN THE LOCATION CHOSEN

Attempts to reduce the spread of marine pests to new areas can be frustrated by the need to obtain a resource consent and the associated delays to treatment. For this reason, the applicant seeks to reduce this risk by applying for a consent that provides for the treatment and eradication of any non-indigenous marine species in any of the locations shown in **Appendix A** (being areas in Otago that have higher levels of vessel traffic). However, the applicant's first priority is to treat Sabella, which has recently been found in the Otago harbour.

There are alternatives to the use of biocides in the treatment of biofouling (e.g. encapsulation without the addition of a biocide, hand removal or underwater scraping of the hull). However, it is impractical to clear large infestations by hand, and in some instances, this could result in some smaller individual species being missed. For the same reason, scraping the hull or hard surface is not a preferred treatment methodology. This treatment approach can also result in the marine pest entering the receiving environment and continuing to grow in the area.

Therefore, based on its demonstrated effectiveness, ease of use, health and safety considerations and limited adverse environmental effects, the Council has chosen to use a chlorine solution as a biocide in combination with encapsulation for the treatment and eradication of invasive non-indigenous pest species.

#### 6. **VOLUNTEERED CONDITIONS**

The applicant volunteers the following conditions:

- 1. This consent authorises the discharge to coastal water of treated seawater containing:
  - a) chlorine, as a solution of sodium dichloroisocyanurate (dichlor) associated with the treatment and eradication of invasive pest species;
  - sodium thiosulphate, for the purpose of dechlorinating treated seawater; as described in the application for resource consent dated xxx; and

\_-

Feature Article: Forecasting the economic impacts of two biofouling invaders on aquaculture production of green lipped mussels in NZ; Tarek Soliman; Graeme J. Inglis (The National Institute of Water and Atmospheric Research Ltd, 10 Kyle Street, Riccarton, Christchurch, 8011, NZ): 11 January 2018.

- c) residual cyanuric acid, dissolved oxygen, dissolved sulphides and organic matter.
- Any other chlorine or neutralisation agent shall only be used with the prior written approval of the Council's Monitoring Officer.
- 2. For the purposes of this consent, an invasive pest species shall be:
  - a) Any exotic marine organism new to Otago coastal waters; or
  - b) Any established exotic marine organism named as either an organism of interest or an organism classified as a pest in any Otago Regional Pest Management Plan or Strategy prepared in accordance with the provisions of the Biosecurity Act 1993 (or any subsequent amendment).
- 3. The discharge of contaminants shall only occur from the use of encapsulation systems, such as floating docks / pontoons, wrapping or similar systems that have been designed or modified for the containment and treatment of marine pest-infected submerged structures or boat hulls.
- 4. The amount (in kilograms) of sodium dichloroisocyanurate used to dose encapsulated water shall be determined in accordance with Appendix 1.
- 5. The amount (in grams) of sodium thiosulphate used to neutralise free available chlorine in treated encapsulated water shall be determined in accordance with Appendix 2.
- 6. Handling and application of chlorine chemical treatment (granules or liquid), in either undiluted or diluted form shall be undertaken in accordance with any applicable regulation prepared under the Hazardous Substances and New Organisms Act 1996.
- 7. Prior to discharge, the concentration of free available chlorine in treated encapsulated water shall not exceed 0.5 milligrams per litre.
- 8. Any visible organic matter, including dead or dying organisms, dislodged during treatment must be collected and removed from the treatment site and disposed of to a designated refuse site on land.
- 9. There shall be no viable unwanted or pest organisms released into the coastal marine area as a result of exercising this consent.

- 10. The discharge of treated encapsulated water to coastal water should be undertaken by mechanical pumping where such facilities are available.
- 11. The discharges of contaminants authorised by this consent shall only occur in those areas shown in the maps attached in Appendix 3.
- 12. As far as is practicable, the discharge of treated encapsulated water should occur:
  - a) in areas with a high degree of tidal flushing; and
  - b) during periods of tidal flow.

#### **Notification and Reporting**

- 13. The consent holder shall notify the Consent Authority at least 24 hours prior to the encapsulation and treatment of any vessel or structure. The consent holder shall also notify Southern Clams at least 24 hours prior to the encapsulation and treatment of any vessel or structure in the Otago harbour.
- 14. The consent holder shall maintain a log of operations detailing the following:
  - the date(s) and time(s) on which encapsulation, treatment and discharge of treated encapsulated water occurred;
  - b) the location(s) where the encapsulation, treatment and discharge occurred;
  - c) the weight of sodium dichloroisocyanurate added and the weight of any sodium thiosulphate used to neutralise residual free available chlorine;
  - d) the estimated volume of encapsulated water discharged; and
  - e) the results of inspections following treatment to determine whether biofouling has been killed.

A copy of this log shall be provided to the Consent Authority every six months from the date of issue of this consent, even if this consent is not exercised in any 6-month period.

#### **Contaminant Spills**

15. In the event of any spill of oil, fuel or other contaminant, the consent holder shall remove the contaminants immediately from the site and take immediate, effective steps to remedy the spill. The consent holder shall immediately notify the Consent Authority and the consent holder that a spill has occurred. Notification shall include the type and quantity of oil, fuel or other contaminant spilled and the steps taken to avoid, remedy or mitigate any adverse effects.

16. In the event of a spill of any contaminant, no dispersants or degrading agents shall be discharged to water without the approval of the Consent Authority.

#### 7. CONSULTATION

The applicant recognises the special significance of the coastal marine area to Ngãi Tahu iwi. Prior to lodging this application, the applicant contacted Aukaha on several occasions to provide Ōtākou Rūnaka with the opportunity to provide feedback on its proposal. The applicant has also verbally presented the application to East Otago Taiāpure Komiti as well as provided the full document to a representative of Kāti Huirapa Rūnaka Ki Puketeraki as part of its sabella incursion response.

The applicant has also consulted with Port Otago, Biosecurity NZ (MPI), Southern Clams, and the University Marine Science department.

A summary of the consultation undertaken is included in **Appendix F**.

The applicant is committed to ongoing consultation beyond lodgement and throughout the term of any granted consents.

#### 8. STATUTORY CONSIDERATIONS

#### 8.1 INTRODUCTION

The RMA is the principal statutory document governing the use of land, air and water. The purpose of the RMA, as set out in section 5, is to "promote the sustainable management of natural and physical resources". This section of the AEE sets out the statutory framework under the RMA that applies to the resource consents that are being sought from the Otago Regional Council.

As noted in Section 4 of this AEE, the overall activity status of this resource consent application is discretionary. As such, it is necessary to consider the resource consent application under the decision-making framework of section 104 of the RMA.

#### 8.2 DURATION OF CONSENT

In accordance with section 123 of the RMA, the ORC seeks a duration of consent of 35 years. Sabella was first detected in NZ in 2008, and most recently in 2024 (in the Otago Harbour). These recent findings underline the continued risk of reintroduction of Sabella and other invasive pest species into the coastal environment and demonstrate an ongoing requirement to manage the risk of these invasive non-indigenous marine species becoming established or

spreading to other parts of the CMA. A term of 35 years will provide the Council with certainty and the long-term ability to respond to any other pest incursions along the Otago coastline.

#### 8.3 **SECTION 104**

Section 104 of the RMA sets out the matters to which a consent authority must have regard to, subject to Part 2 of the RMA, when considering an application for resource consent. These are:

- (1) When considering an application for a resource consent and any submissions received, the consent authority must, subject to Part 2, have regard to—
  - (a) any actual and potential effects on the environment of allowing the activity; and
  - (ab) any measure proposed or agreed to by the applicant for the purpose of ensuring positive effects on the environment to offset or compensate for any adverse effects on the environment that will or may result from allowing the activity; and
  - (b) any relevant provisions of—
    - (i) a national environmental standard:
    - (ii) other regulations:
    - (iii) a national policy statement:
    - (iv) a New Zealand coastal policy statement:
    - (v) a regional policy statement or proposed regional policy statement:
    - (vi) a plan or proposed plan; and
  - (c) any other matter the consent authority considers relevant and reasonably necessary to determine the application.
- (2) When forming an opinion for the purposes of subsection (1)(a), a consent authority may disregard an adverse effect of the activity on the environment if a national environmental standard or the plan permits an activity with that effect.
- (2A) When considering an application affected by section 124 or 165ZH(1)(c), the consent authority must have regard to the value of the investment of the existing consent holder.
- (2B) When considering a resource consent application for an activity in an area within the scope of a planning document prepared by a customary marine title group under section 85 of the Marine and Coastal Area (Takutai Moana) Act 2011, a consent authority must have regard to any resource management matters set out in that planning document.

Section 104 of the RMA does not give primacy to any of the matters to which a consent authority is required to have regard. All of the relevant matters are to be given such weight as the relevant statutory planning documents may direct, and all provisions are subject to Part 2 of the RMA, although it is understood that a consent authority is not required to consider Part 2 of the RMA unless there is uncertainty or invalidity in the relevant statutory planning documents.

The matters for consideration under section 104(1)(a), (ab), (b), (c) and (2B) of the RMA are assessed in the sub-sections below.

#### 8.3.1 Actual and Potential Effects

With respect to section 104(1)(a) of the RMA, the actual and potential effects on the environment associated with the treatment of biofouling are summarised in Section 5 of this AEE. Overall, it is concluded that any actual and potential adverse effects associated with the proposed discharges can be appropriately avoided, remedied or mitigated.

Furthermore, and based on the conclusions reached with respect to the actual and potential environmental effects of the proposal, no additional compensatory or offsetting measures are proposed or considered necessary by ORC in the context of section 104(1)(ab) of the RMA.

#### 8.3.2 Relevant Statutory Planning Documents

In terms of section 104(1)(b) of the RMA, the following sub-sections provide an assessment of the application against the:

- > New Zealand Coastal Policy Statement 2010 ("NZCPS");
- > Operative Regional Policy Statement ("oRPS") and proposed Regional Policy Statement ("pRPS"); and
- > Regional Coastal Plan.

With regards to section 104(1)(c), the following 'other matters' are also considered to be relevant to this application:

- > The New Zealand Biosecurity Act 1993 ("the Biosecurity Act");
- > The Kāi Tahu Ki Otago Natural Resource Management Plan 2005 ("**NRMP**") iwi management plan;
- > The Craft Risk Management Standards<sup>17</sup> ("**CRMS**"), administered by the Ministry for Primary Industries ("**MPI**"); and
- > The Otago Pest Management Plan 2019-2029 ("**OPMP**").

An analysis as to how the proposal relates to these documents has been undertaken accordingly.

<sup>&</sup>lt;sup>17</sup> http://www.biosecurity.govt.nz/files/regs/ships/crms-biofouling-standard.pdf

With regards to section 104(2B), the application relates to an activity in an area within the scope of a planning document prepared by a customary marine title group under section 85 of the Marine and Coastal Area (Takutai Moana) Act 2011. A summary of the relevant resource management matters set out in that planning document has therefore been undertaken.

#### 8.3.3 New Zealand Coastal Policy Statement

Objective 1 of the NZCPS is to safeguard the integrity, form, functioning and resilience of the coastal environment and sustain its ecosystems by:

- > Maintaining or enhancing natural biological and physical processes in the coastal environment and recognising their dynamic, complex and interdependent nature
- > Protecting representative or significant natural ecosystems and sites of biological importance and maintaining the diversity of New Zealand's indigenous coastal flora and fauna
- > Maintaining coastal water quality and enhancing it where it has deteriorated from what would otherwise be its natural condition, with significant adverse effects on ecology and habitat, because of discharges associated with human activity.

Policy 12 of the NZCPS provides for the control of activities that could have adverse effects on the coastal environment by causing the release or spread of harmful aquatic organisms ("HAO"). These activities may include the introduction of structures likely to be contaminated with HAO, and the discharge of organic material from vessels (for example, during cleaning). The Policy states that management of these activities may include conditions in resource consents.

Policy 23(1) of the NZCPS requires that management of discharges to water should have particular regard to:

- > The sensitivity of the receiving environment.
- > The nature of the contaminants to be discharged, the particular concentration of contaminants needed to achieve the required water quality in the receiving environment, and the risks if that concentration of contaminants is exceeded.
- > The capacity of the receiving environment to assimilate the contaminants.
- > Avoid significant adverse effects on ecosystems and habitats after reasonable mixing.
- > Use the smallest mixing zone necessary to achieve the required water quality in the receiving environment.
- > Minimise adverse effects on the life-supporting capacity of water within a mixing zone.

Based on its demonstrated effectiveness, ease of use, health and safety considerations and environmental effects (which have been demonstrated to be less than minor), the Council has chosen to use a chlorine solution as a biocide in combination with encapsulation for the treatment and eradication of invasive non-indigenous species. This has been proven to be an effective method in the treatment and eradication of biofouling in other parts of NZ. It has also been demonstrated that the adverse effects associated with this treatment method and the resultant discharge of contaminants (which are released following the treatment process) in respect of water quality, and on biological communities can be appropriately mitigated.

The encapsulated water (with added biocide) will also be treated prior to discharge so that the actual and potential effects of the discharges on water quality, although expected to be small, are further mitigated. On this basis the proposal is consistent with the policy direction of the NZCPS.

#### 8.3.4 Operative Otago Regional Policy Statement

The oRPS became fully operative on 4 March 2024. The oRPS provides high level direction for resource management in Otago and contains objectives, policies and methods to achieve integrated management of natural and physical resources. Regional and District Plans must give effect to it.

The objectives and policies are set out in Part B of the oRPS and cover a broad range of topics that are potentially relevant to the proposed contour channel upgrades. The key topic of relevance is addressed below:

#### Chapter 3 - Otago has high quality natural resources and ecosystems

The key objectives and policies relating to high quality natural resources and ecosystems in the oRPS seek to recognise, maintain or enhance the values (including intrinsic values) of ecosystems and natural resources where degraded. Policy 3.1.5 (b) provides specific direction in relation to the management of coastal water, and seeks to maintain healthy coastal ecosystems, the range of indigenous habitats provided by the coastal marine area, and the migratory patterns of indigenous coastal water species or enhance these values where they have been degraded.

The purpose of this application is to provide for healthy coastal ecosystems by treating and eradicating invasive non-indigenous marine species. Conversely, if left untreated, these marine

<sup>&</sup>lt;sup>18</sup> ORPS – Objective 3.1.

pests could result in the significant degradation of coastal ecosystems and indigenous habitats. On this basis the proposal is consistent with the relevant objectives and policies of the oRPS.

#### 8.3.4.1 Proposed Otago Regional Policy Statement

The pRPS was notified in June 2021, and following a determination from the High Court, the pRPS was separated into two parts – a freshwater and non-freshwater planning instrument. Otago Regional Council decisions on both the freshwater and non-freshwater planning instruments of the pRPS were publicly notified on 30 March 2024. A number of appeals have been made to the High Court on the Freshwater Planning Instrument parts of the pRPS, and the Environment Court on the non-freshwater parts.

The relevant provisions of the non-freshwater parts of the pRPS are set out in Part 3 of the pRPS and cover a broad range of domains and topics that are relevant to this application. These domains and topics are discussed further below and include the coastal environment, ecosystems and indigenous biodiversity.

Of relevance to this application is Objective CE-01 which seeks to safeguard the integrity, form, functioning and resilience of Otago's coastal environment so that:

- > The mauri of coastal water is protected, and restored where it has degraded;
- Coastal water quality supports healthy ecosystems, natural habitats, water-based recreational activities, existing activities, and customary uses, including practices associated with mahika kai and kaimoana;
- > The dynamic and interdependent natural biological and physical processes in the coastal environment are maintained or enhanced;
- > Representative or significant areas of biodiversity are protected; and
- > Surf breaks of national significance are protected.

Policy CE-P3 reiterates the direction of Policy 3.1.5 (b) of the oRPS and directs that coastal water is managed so that healthy coastal ecosystems, indigenous habitats provided by the coastal environment, and the migratory patterns of indigenous coastal water species are maintained or enhanced.

Objective ECO-01 is also relevant as it seeks for Otago's indigenous biodiversity to be healthy and thriving and any decline in quality, quantity and diversity is halted.

Part 2 of the pRPS is also relevant to this application, as it provides an overview of the significant resource management issues for the region ("SRMR"). The SRMR include pest species and the

ongoing threat to indigenous biodiversity, economic activities and landscapes, 19 recognising that invasive marine species affect the regions marine waters, can cause significant economic losses and can have significant environmental and social impacts.

The proposed discharges are intended to address a SRMR by treating an invasive marine species which is known to pose an ongoing threat to indigenous biodiversity and economic activities and can cause significant environmental and social impacts. Treating biofouling will help to improve the indigenous biodiversity of Otago's coastline, and on this basis the proposal is consistent with the relevant objectives and policies of the pORP.

#### 8.3.5 **Regional Coastal Plan**

The Regional Coastal Plan for Otago first became operative in September 2001 and considers the use, development and protection of the CMA of Otago. The objectives and policies of relevance to this application are contained in chapter 10, and include:

Objective 10.3.2 - To take into account community, cultural and biological values associated with Otago's coastal marine area when considering the discharge of contaminants into Otago's coastal waters.

Objective 10.3.3 - To safeguard the life-supporting capacity of Otago's coastal marine area.

Policy 10.4.7 - The discharge of a contaminant (either by itself or in combination with other discharges) into the coastal marine area will only be allowed where:

- (a) It can be shown that the adverse effects of the discharge to any area, other than the coastal marine area, would create greater adverse effect than the discharge to the coastal marine area; or
- (b) There are no practicable alternatives to the discharge occurring to the coastal marine area; and
- (c) The discharge is of a standard which will achieve a water quality suitable for contact recreation and shellfish gathering within ten years of approving this Plan.

Policy 10.4.12 - The use of hazardous substances within the coastal marine area will only be allowed where that use is necessary for:

(a) The control of plant or animal pests.

The Regional Coastal Plan provides policy direction which specifically anticipates the use of hazardous substances in the CMA where it is necessary for the control of plant and animal pests. It is also recognised that the use of chemicals which may be classed as hazardous substances may result in less adverse effects on the environment than allowing for the

<sup>&</sup>lt;sup>19</sup> pRPS – SRMR 13.

continuation of the pest. That is considered to be the case in respect of this application. Further, there are no practicable alternatives to the discharge occurring in the CMA. As such this application is considered to be consistent with the relevant objectives and policies of the Regional Coastal Plan.

#### 8.4 CLAUSE 1(C) – OTHER RELEVANT MATTERS

#### 8.4.1 Biosecurity Act 1993

Sabella is a notifiable organism<sup>20</sup> under the Biosecurity Act and recognised as an organism capable of causing adverse effects, particularly to biodiversity values. Under the Biosecurity Act, regional councils provide leadership in "activities that prevent, reduce, or eliminate adverse effects from harmful organisms that are present in New Zealand (pest management) in its region". Amongst other powers, each Council has the power to provide for the assessment and eradication or management of pests, in accordance with relevant management plans (such as the OPMP).

Section 52 of the Biosecurity Act prohibits knowingly communicating, causing to be communicated, releasing, causing to be released, or otherwise spreading any pest or unwanted organism.

Under section 122 of the Biosecurity Act, Councils can issue Notices of Direction requiring that fouled vessels be cleaned before entering, travelling within or leaving their jurisdiction. This power has been used by Northland Regional Council in their response to Sabella and the seaweed *Undaria pinnatifida*.

The purpose of this application is to enable biofouling to be undertaken by ORC in the Otago region in accordance with the powers and requirements of the Biosecurity Act.

#### 8.4.2 The Kāi Tahu Ki Otago Natural Resource Management Plan 2005

The Kāi Tahu Ki Otago Natural Resource Management Plan 2005 ("**NRMP**") is the principal planning document for Kāi Tahu ki Otago, which is the collective term used to describe the four Papatipu Rūnaka and associated whānau and rōpū of the Otago Region. The four Papatipu Rūnaka are:

- > Te Rūnanga o Moeraki;
- > Kāti Huirapa Rūnaka ki Puketeraki;

\_ \_

<sup>&</sup>lt;sup>20</sup> In accordance with section 45 of the Biosecurity Act.

- > Te Runanga o Ōtākou; and
- > Hokonui Rūnanga.

The NRMP provides information, direction and a framework to achieve a greater understanding of the natural resource values, concerns and issues of Kāi Tahu ki Otago and provides a basis from which Kāi Tahu ki Otago participate in the management of Otago's resources.

Part 3 of the NRMP sets out the issues, objectives and policies for Kāi Tahu ki Otago for the Otago region. Within Part 3 of the NRMP, Chapter 5 outlines the issues, objectives and policies for the whole of the Otago region. The overall objectives in Chapter 5 include:

#### 5.5.3 Mahika Kai and Biodiversity Objectives

Habitats and the wider needs of mahika kai, taoka species and other species of importance to Kāi Tahu ki Otago are protected.

Mahika kai resources are healthy and abundant within the Otago Region.

Mahika kai is protected and managed in accordance with Käi Tahu ki Otago tikaka.

Mahika kai sites and species are identified and recorded throughout the Otago Region.

Indigenous plant and animal communities and the ecological processes that ensure their survival are recognised and protected to restore and improve indigenous biodiversity within the Otago Region.

To restore and enhance biodiversity with particular attention to fruiting trees so as to facilitate and encourage sustainable native bird populations.

To develop strategies and implementation plans for comprehensive control and/or eradication of pest species in targeted areas beyond conservation managed lands.

To provide for access to cultural materials and to support the development and promotion of a Cultural Materials Bank with the Department of Conservation.

To create a network of linked ecosystems for the retention of and sustainable utilisation by native flora and fauna.

Some biofouling species can outcompete native species, including filter-feeding organisms, for food and space and can threaten commercially and culturally important kaimoana species like kuku/kūtai (mussels), tio (oysters), and tipa/tupa (scallops). The applicant proposes to treat and prevent the spread of biofouling (containing invasive marine species, such as Sabella) to restore and improve biodiversity values, protect indigenous plant and animal communities and the ecological processes that ensure their survival. This is consistent with the objectives and policies for Kāi Tahu ki Otago.

#### 8.4.3 Craft Risk Management Standard for vessel biofouling

The Craft Risk Management Standard<sup>21</sup> ("**CRMS**"),<sup>22</sup> administered by the Ministry for Primary Industries ("**MPI**"), requires that vessels entering New Zealand complete a biofouling declaration and arrive with a 'clean hull' in accordance with specified biofouling thresholds. There are two different thresholds: 'long–stay vessels' (vessels staying in New Zealand for > 29 consecutive days) are not allowed to arrive with more than a slime layer and goose barnacles on their entire submerged hull surface.

'Short–stay vessels' (vessels staying ≤ 28 consecutive days) are allowed to have more fouling, but it is restricted to macroalgae and very low abundance of one type of sessile animal biofouling such as barnacles, tubeworms or bryozoans. One way that fouled vessels can comply with the CRMS is to treat their hulls within 24 h of arrival, and encapsulation may provide a method for doing this.

However, confirmation of the acceptability to MPI of the proposed method of treatment may be required because encapsulation kills fouling but does not necessarily remove it from the hull.

#### 8.4.4 Otago Pest Management Plan 2019-2029

The OPMP has been developed to meet ORC's responsibilities under Part 2 of the Biosecurity Act, which is to provide regional leadership through activities that prevent, reduce, or eliminate adverse effects resulting from harmful species that are present in the region. The OPMP details which approaches are to be used for which pest species, and the methods to be used for control.

The OPMP lists Sabella as an organism of Interest<sup>23</sup> meaning it has been identified as posing a sufficient future risk to warrant being watch-listed for ongoing surveillance or future control opportunities.

In conjunction with the OPMP, ORC has also established a Biosecurity Strategy ("the Strategy") which sets out ORC's objectives for biosecurity management in the region using the full range of statutory and non-statutory tools available. Strategy priorities provide for protection of indigenous biodiversity, protection of landscape, recreation, cultural and amenity values and minimising the impact on agricultural production. The Strategy also supports pest management and seeks to integrate the regulatory and non-regulatory programmes.

ᆛ

 $<sup>{}^{21} \</sup>quad \underline{\text{https://www.mpi.govt.nz/legal/compliance-requirements-secondary-legislation/craft-risk-management-standards/}$ 

<sup>&</sup>lt;sup>22</sup> See section 24E of the Biosecurity Act 1993.

OPMP – Appendix 1.

This proposal will support the Council's delivery and implementation of the OPMP and the associated Strategy.

#### 8.5 MARINE AND COASTAL AREA (TAKUTAI MOANA) ACT 2011

The purpose of the Marine and Coastal Area (Takutai Moana) Act 2011 ("MACAA") is to:

- (a) Establish a durable scheme to ensure the protection of the legitimate interests of all New Zealanders in the marine and coastal area of New Zealand;
- (b) Recognise the mana tuku iho<sup>24</sup> exercised in the marine and coastal area by iwi, hapū, and whänau as tangata whenua;
- (c) Provide for the exercise of customary interests in the common marine and coastal area ("CMCA"); and
- (d) Acknowledge the Treaty of Waitangi (te Tiriti o Waitangi). The Act repeals the Foreshore and Seabed Act 2004 ("the 2004 Act") and restores the customary interests extinguished by that Act.

Section 62(3) of the MACAA requires that where the activity occurs over an area where a customary marine title has been applied for, the applicant must notify and seek the views of the group who have applied for the customary marine title prior to applying for resource consent.

Applications for customary marine title for the common marine and coastal area within Ōtākou have been made by Te Rūnanga o Ngāi Tahu on behalf of Ngāi Tahu Whānui, Paul and Natalie Karaitiana and Te Maiharoa Whanau.

The applicant groups were notified of the application on 26 March 2025 in accordance with regulation 62(3) of the MACAA. A copy of the notices is included in **Appendix G**.

The applicant groups have not responded to the notice or provided feedback.

#### 8.6 SECTION 105 OF THE RMA

Section 105 of the RMA applies to applications for discharge permits, or a coastal permit to do something that would contravene section 15 of the RMA. It states that in addition to the matters in section 104(1) of the RMA, the Council must also have regard to –

- (a) the nature of the discharge and the sensitivity of the receiving environment to adverse effects; and
- (b) the applicant's reasons for the proposed choice; and

\_\_\_

 $<sup>^{24}</sup>$  Defined in section 9 of the MACAA as inherited right or authority derived in accordance with tikanga.

(c) any possible alternative methods of discharge, including discharge into any other receiving environment.

In respect of section 105(1)(a) of the RMA, the nature of the discharge and the sensitivity of the receiving environment are outlined in Sections 2, 3.2 and 4 of this report.

In respect of section 105(1)(b), encapsulation, with the addition of chlorine as a biocide has been proven to be successful in the treatment of larger vessels and barges and in the treatment of heavy biofouling, including large numbers of Sabella on the hull of an 8 m long yacht using encapsulation in Auckland's Westhaven Marina.

Chlorine also has a low acute toxicity, and a single dosing of 200 mg/L of chlorine has been proven to be effective in killing all biofouling after 16 h exposure, including Sabella, oysters and mussels. Supporting laboratory studies demonstrated that a 4-h exposure of Sabella (in their tubes) to this concentration killed more than 99% of adult worms and is therefore the preferred treatment regime for this species.

In respect of section 105(1)(c) of the RMA, the ORC has considered alternative methods, as detailed in Sections 3.1, 5.2 and 5.8 of this report. Based on its demonstrated effectiveness, ease of use, health and safety considerations and environmental effects (which have been demonstrated to be less than minor), the Council has chosen to use a chlorine solution as a biocide in combination with encapsulation for the treatment and eradication of invasive non-indigenous marine species.

#### 8.7 SECTION 107 OF THE RMA

Section 107(1) of the RMA states that:

Except as provided in subsection (2), a consent authority shall not grant a discharge permit or a coastal permit to do something that would otherwise contravene section 15 or section 15A allowing—

- (a) the discharge of a contaminant or water into water; or
- (b) a discharge of a contaminant onto or into land in circumstances which may result in that contaminant (or any other contaminant emanating as a result of natural processes from that contaminant) entering water; or
- (ba) the dumping in the coastal marine area from any ship, aircraft, or offshore installation of any waste or other matter that is a contaminant,—

if, after reasonable mixing, the contaminant or water discharged (either by itself or in combination with the same, similar, or other contaminants or water), is likely to give rise to all or any of the following effects in the receiving waters:

(c) the production of any conspicuous oil or grease films, scums or foams, or floatable or suspended materials:

- (d) any conspicuous change in the colour or visual clarity:
- (e) any emission of objectionable odour:
- (f) the rendering of fresh water unsuitable for consumption by farm animals:
- (g) any significant adverse effects on aquatic life.

#### Section 107 (2) of the RMA states:

A consent authority may grant a discharge permit or a coastal permit to do something that would otherwise contravene section 15 that may allow any of the effects described in subsection 1 if it is satisfied –

- (a) that exceptional circumstances justify the granting of the permit; or
- (b) that the discharge is of a temporary nature; or
- (c) that the discharge is associated with necessary maintenance work—and that it is consistent with the purpose of this Act to do so.

#### And Section 107 (2A) of the RMA states:

A consent authority may grant a discharge permit or a coastal permit to do something that would otherwise contravene section 15 or 15A that may allow the effects described in subsection (1)(g) if the consent authority—

- (a) is satisfied that, at the time of granting, there are already effects described in subsection (1)(g) in the receiving waters; and
- (b) imposes conditions on the permit; and
- (c) is satisfied that those conditions will contribute to a reduction of the effects described in subsection (1)(g) over the duration of the permit.

After reasonable mixing, the discharges are not expected to result in any of the effects listed in s107(1) of the RMA, except that is for a significant adverse effect on aquatic life (s107 (1) (g)). The nature and purpose of the discharge is to adversely affect aquatic life. However, this is limited to invasive non-indigenous marine species which if left untreated would otherwise cause significant harm to the environment. None of the other effects listed in s107 (1) are expected to arise, because the proposed treatment methodology involves the addition of a biocide (chlorine) to a relatively confined volume of trapped water. Further, following treatment, the residual chlorine (within the encapsulated water) will be neutralised, with a non-toxic neutralising agent (Sodium thiosulphate) prior to discharge.

Regardless, the Council may grant the coastal permit and allow the effects described in subsection (1) (g) in accordance with section 107 (2A). This is because Sabella is already causing (or has the potential to cause) significant adverse effects on aquatic life, particularly if

left untreated. The applicant is also volunteering conditions for the permit which will contribute to a reduction of the effects described in subsection 1 (g) over the duration of the permit.

Notwithstanding the intended and purposeful effects on aquatic life, the consent authority's ability to grant the consent is not constrained by s107 (1) of the RMA, because there are also exceptional circumstances that justify granting the permit (s107 (2) (a)). That is, if left untreated, invasive non-indigenous marine species could have significant adverse effects on the environment and indigenous biodiversity. The discharges are considered to result in less adverse effects on the environment than allowing for the continuation of the pest. The discharges are also of an infrequent and temporary nature (s107 (2) (b)).

#### 8.8 PART 2 OF THE RMA

It is understood that a consent authority is generally no longer required to consider Part 2 of the RMA beyond its expression in the relevant statutory planning documents, unless it is appropriate to do so. However, for completeness and in accordance with schedule 4(2)(1)(f) of the RMA, Part 2 of the RMA is considered in the following paragraphs.

The purpose of the RMA is to provide the sustainable management of natural and physical resources. In this regard, the proposal seeks to provide for the sustainable management of the CMA, by enabling the treatment of biofouling. The purpose of this application is to eradicate invasive non-indigenous marine species in order to protect the existing biodiversity values of the Otago coastline by using a treatment method that is proven to be effective, and with adverse effects that can be appropriately mitigated, as demonstrated elsewhere in New Zealand.

Overall, it is considered that the proposed discharges associated with the treatment of biofouling will promote the sustainable management of natural and physical resources in accordance with Part 2 of the RMA as it will protect and improve biodiversity values and thereby positively contribute to wider social and economic wellbeing for the community.

The proposed discharges will also adequately avoid, remedy or mitigate any potential effects such that the sustainable management purpose of the RMA is achieved.

#### 8.9 SUMMARY

Overall, it is considered that the granting of the resource consent, subject to the imposition of appropriate conditions (refer section 6), will promote the sustainable management of natural and physical resources and ensure that adverse effects on the environment are less than minor and / or adequately avoided, remedied, or mitigated.

#### 9. SECTION 95A PUBLIC NOTIFICATION

Whether the application should be publicly notified has been assessed as follows, according to section 95A of the RMA:

#### Step 1 - Mandatory Public Notification:

- ORC does not request public notification of the application (s95A(3)(a)); and
- > The application does not include an application for the exchange of recreation reserve land (s95A(3)(c)).

#### Step 2 - Public Notification Precluded:

- > Public notification is not precluded by any rule of the Regional Coastal Plan (s95A(5)(a)); and
- > The proposal is a discretionary activity. Therefore, public notification is not precluded as s95A(5)(b)(ii) does not apply.

#### Step 3 - Public Notification in Certain Circumstances:

- > There are no rules in the Regional Coastal Plan that require public notification in accordance with section 95A(8)(a); and
- > For the reasons set out in Section 5 of this AEE, the activity is not likely to have adverse effects on the environment that are more than minor in accordance with section 95A(8)(b).

#### Step 4 - Public Notification in Special Circumstances:

In considering whether special circumstances apply to warrant notification of a resource consent application (s95A(9)), it is noted that special circumstances:

- > Are unusual or exceptional but may be less than extraordinary or unique; and
- > Unlikely to be justified where there is no evidence of adverse effects likely to arise from an activity.

This application is not unusual or exceptional. The ORC's obligations to manage pest incursions in the region are already legislated under the Biosecurity Act, the OPMP and supporting Biosecurity Strategy. Further, this is not the first time biofouling has been found and treated in New Zealand waters. The proposed treatment method, involving encapsulation with the addition of a biocide (chlorine), has already been used elsewhere in New Zealand, and proven to be an effective method for treating and eradicating biofouling with minimal adverse environmental effects.

Given the above, there are no special circumstances that warrant public notification of the resource consent application.

#### 9.1 SECTION 95B LIMITED NOTIFICATION

Section 95B(1) of the RMA requires a consent authority to determine whether to give limited notification of a resource consent application if an application is not publicly notified under section 95A. This has been considered according to section 95B of the RMA as follows:

#### Step 1 - Certain Affected Groups and Affected Persons Must Be Notified:

> Limited notification is not required under Step 1 as the proposed works do not affect customary rights groups or customary marine title groups or a statutory acknowledgment.

### Step 2 – If Not Required by Step 1, Limited Notification Precluded in Certain Circumstances:

- > The proposal is not subject to any rule in the Regional Coastal Plan that precludes limited notification; and
- > Limited notification is also not precluded as the proposal is not a controlled activity.

#### Step 3 - If Not Precluded by Step 2, Certain Other Affected Persons Must Be Notified:

> The proposal is not a boundary activity.

The application therefore falls into the 'any other activity' category and the effects of the proposed discharges on any persons are assessed in accordance with section 95E of the RMA.

#### 9.2 SECTION 95E ASSESSMENT OF EFFECTS ON PERSONS

According to section 95E of the RMA, a person is an affected person if the activity's adverse effects on the person are minor or more than minor (but are not less than minor).

In terms of section 95E of the RMA, no person is considered to be adversely affected by this proposal based on the assessment of effects in Section 5 of this AEE. In particular:

Any adverse effects are considered to be less than minor and can be minimised through a range of measures including the proposed monitoring and dosing of residual chlorine in the encapsulated water post treatment to less than 0.5 mg/L prior to discharge; and

#### 9.3 NOTIFICATION

In light of the analysis provided above, it is concluded the application is able to be processed on a non-notified basis in accordance with sections 95A – 95E of the RMA.

#### 10. CONCLUDING STATEMENT

The ORC must ensure the CMA is sustainably managed. For this reason, it seeks a resource consent to discharge contaminants into the CMA associated with the treatment and eradication of invasive non-indigenous marine species, including Sabella.

Sabella is an invasive exotic marine species which has recently been discovered at Port Chalmers in Otago. This recent finding underlines the continued risk of reintroduction of this marine pest, and other invasive marine species, especially in areas with a high level of vessel traffic. Invasive non-indigenous marine species pose a serious threat to the marine environment and must be eradicated. The treatment process involves encapsulation, with the addition of a biocide (chlorine solution) to the encapsulated water.

Field and laboratory studies suggest that the likelihood of success of encapsulation in treating biofouling is increased, and the treatment time greatly reduced, by adding a biocide to the encapsulated water. Rapid treatment is important, firstly to reduce the risk of biofouling spreading to other areas, and because the inconvenience and cost of voyage delays (associated with a treatment process that involves encapsulation only) may act as a disincentive to treatment.

Of the potentially suitable biocides, the Council has elected to use a chlorine solution for the purpose of treating biofouling, based on its demonstrated effectiveness, ease of use, health and safety considerations and low environmental effects.

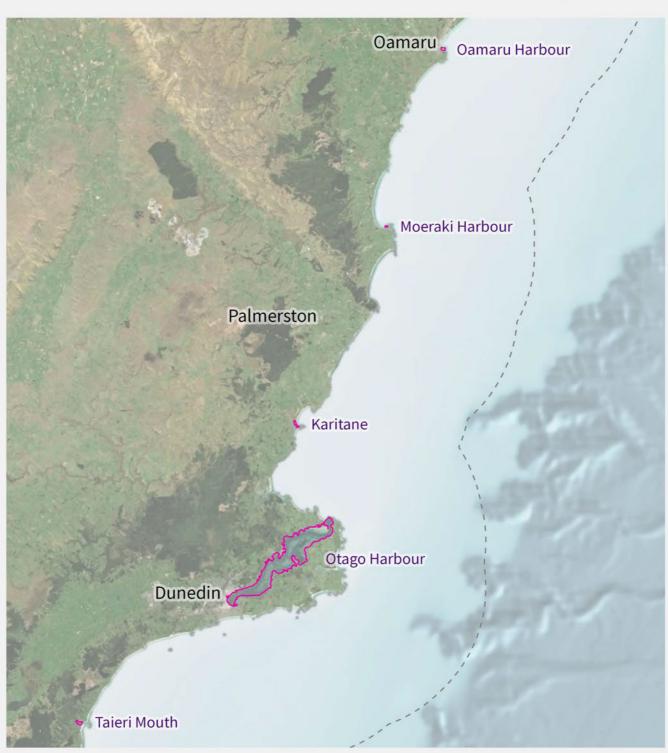
Chlorine has been proven to be successful in the treatment of larger vessels and barges and in the treatment of heavy biofouling, including large numbers of Sabella on the hull of an 8 m long yacht using encapsulation in Auckland's Westhaven Marina.

Chlorine has a low acute toxicity, and a single dosing of 200 mg/L of chlorine has been proven to be effective in killing all biofouling after 16 h exposure, including Sabella, oysters and mussels. Supporting laboratory studies demonstrated that a 4-h exposure of *Sabella spallanzanii* (in their tubes) to this concentration killed more than 99% of adult worms and is therefore the preferred treatment regime for this species. On this basis, the Council has chosen to use a chlorine solution as a biocide in combination with encapsulation for the treatment of invasive non-indigenous marine species.

The actual and potential effects associated with the proposed discharges have been considered in accordance with section 104 of the RMA. It is concluded that any adverse effects on the environment will be less than minor, and the proposal will have significant positive effects by better protecting the biodiversity values of the CMA. The application has also been assessed to sit comfortably with the relevant objectives and policies of the relevant statutory planning documents.



Overall, it is considered that the proposed discharges will be consistent with the purpose of the RMA and that there are no impediments to the granting of the resource consent sought by ORC on a non-notified basis.




### **APPENDIX A**

**Location Maps** 

# Marine Invasive Species Treatment Areas: Overview











# Marine Invasive Species Treatment Areas: Karitane



140

280



# Marine Invasive Species Treatment Areas: Moeraki



70

metres

140



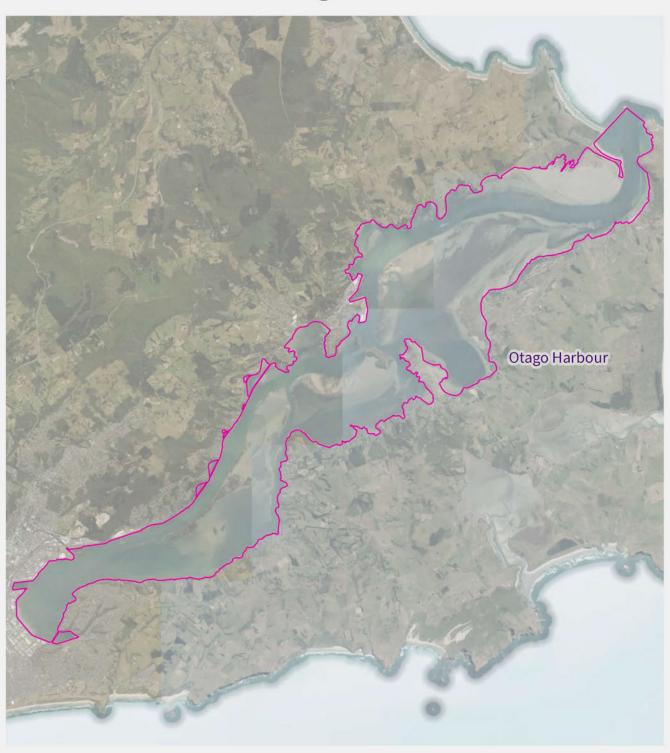
## **Marine Invasive Species** Treatment Areas: Oamaru Harbour 🍣



120

240




Information on this map may not be used for the purposes of any legal disputes. The user should independently verify the accuracy of any information before taking any action in reliance upon it. This 180x250mm map was generated on 18/11/2024 at the scale of 1:5,000.

# Marine Invasive Species Treatment Areas: Otago Harbour



2,000

4,000



# Marine Invasive Species Treatment Areas: Taieri Mouth



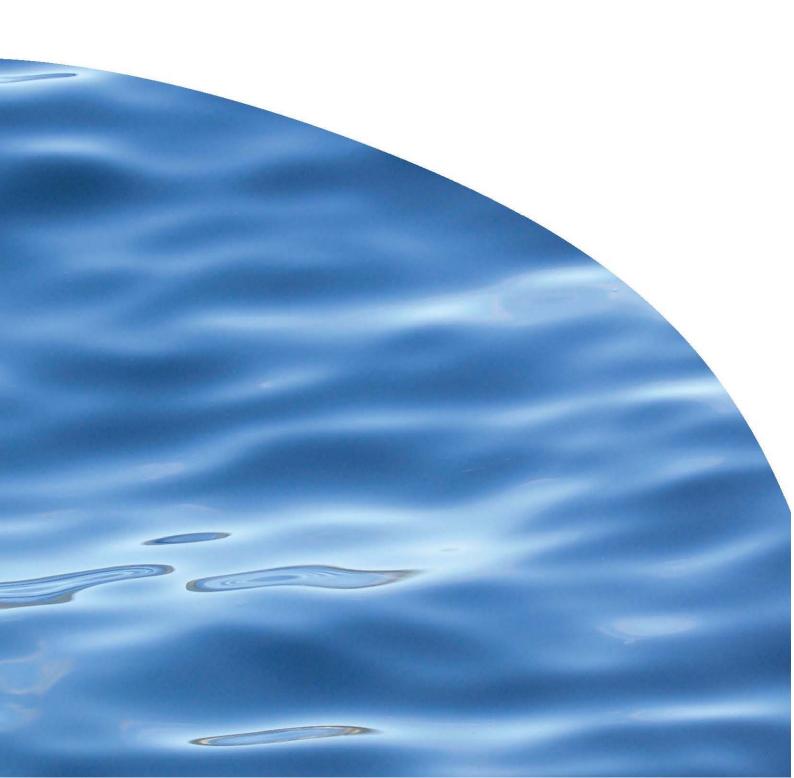
140

280



Information on this map may not be used for the purposes of any legal disputes. The user should independently verify the accuracy of any information before taking any action in reliance upon it. This 180x250mm map was generated on 18/11/2024 at the scale of 1:6,000.




### **APPENDIX B**

Cawthron Institute assessment report



REPORT NO. 2715

### ADDITION OF BIOCIDE DURING VESSEL BIOFOULING TREATMENT - AN ASSESSMENT OF ENVIRONMENTAL EFFECTS



| ADDITION OF BIOCIDE DURING VESSEL<br>BIOFOULING TREATMENT - AN ASSESSMENT OF<br>ENVIRONMENTAL EFFECTS                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DONALD MORRISEY                                                                                                                                                |
| Prepared for Nelson City Council                                                                                                                               |
| CAWTHRON INSTITUTE 98 Halifax Street East, Nelson 7010   Private Bag 2, Nelson 7042   New Zealand Ph. +64 3 548 2319   Fax. +64 3 546 9464 www.cawthron.org.nz |

REVIEWED BY:
Barrie Forrest
APPROVED FOR RELEASE BY:
Chris Cornelisen

ISSUE DATE: 13 July 2015

RECOMMENDED CITATION: Morrisey DJ 2015. Addition of biocide during vessel biofouling treatment - an assessment of environmental effects. Prepared for Nelson City Council. Cawthron Report No. 2715. 46 p. plus appendices.

© COPYRIGHT: This publication must not be reproduced or distributed, electronically or otherwise, in whole or in part without the written permission of the Copyright Holder, which is the party that commissioned the report.

## **EXECUTIVE SUMMARY**

Encapsulation with the addition of a biocide provides regulators, such as regional councils and unitary authorities, with a rapid (1 day or overnight), cost-effective method for treating the fouled hulls of vessels posing a high biosecurity risk. Treatment can be done on arrival, to reduce the risk of introduction of pest species, or before departure, to reduce the risk of spread to new areas.

Recent attempts to use the approach in the Top of the South have been frustrated by the need to obtain a resource consent, and the associated delays to treatment. The purpose of the present study is to generate the information on environmental effects of encapsulation with addition of a biocide to assess whether a consent is required and, if so, to minimise the consent processing time. The study was funded by an Envirolink Medium Advice Grant to Nelson City Council (NCC) and a Small Advice Grant to Tasman District Council (TDC), but the results will be useful to councils throughout New Zealand.

The treatment method is described and potential biocides are reviewed. Chlorine solution, at a concentration of free available chlorine (FAC) of 200 mg/L, is the recommended biocide based on its proven effectiveness, ease of use, and health and safety considerations. The most convenient method of creating this solution is to dissolve sodium dichloroisocyanurate ('dichlor', a compound commonly used for treating swimming pools) in sea water before adding to the encapsulated water. The target concentration should be maintained for at least 4 hours, topping up the FAC as required (FAC is consumed by oxidation of organic matter and other mechanisms during treatment). A look-up table is provided, giving the weights of dichlor required to treat different volumes of encapsulated water.

Environmental risks during treatment derive largely from spillage and leakage and can be managed to a low level by appropriate handling of materials. Risks to the environment from residual FAC at the end of treatment can be reduced to negligible levels by neutralisation with sodium thiosulphate (which is itself non-hazardous). A look-up table is provided, giving the weights of thiosulphate required to treat different residual concentrations of FAC in different volumes of encapsulated water. Neutralisation and reasonable mixing will ensure that FAC in water discharged to coastal waters is unlikely to have adverse environmental effects. Based on experimental studies, other water-quality variables, notably dissolved oxygen (DO), pH, dissolved sulphides and organic matter (OM) are not expected to be significantly affected by the short duration of treatment. To the extent practical, conspicuous amounts of OM, such as organisms killed by the treatment that fall off the hull, will be collected at the end of treatment and disposed of to land, as will any waste materials used in the treatment that are non-reusable.

The effects of treatment are assessed for compliance with the coastal marine water-quality standards of NCC and TDC. These are considered to be easily achievable with appropriate management of the treatment. Recommendations are made for consideration in setting consent conditions, including:

i

- Methods of treatment
- Management of encapsulated water at the end of treatment
- · Water-quality criteria for discharged water
- Criteria for selecting locations for treatment and suggested suitable locations in the Top of the South
- Information to be provided before treatment and from monitoring during the treatment process.

Finally, a worked example is provided, based on the hypothetical treatment of a high-risk vessel that arrived in Port Nelson in 2014.

# **TABLE OF CONTENTS**

| 1.    | INTRODUCTION                                                          | 1        |
|-------|-----------------------------------------------------------------------|----------|
| 1.1.  | Background                                                            | 1        |
| 1.2.  | Aim of this study                                                     | 2        |
| 1.3.  | Planning, policy and regulatory context                               | 3        |
| 1.3.1 |                                                                       |          |
| 1.3.2 |                                                                       |          |
| 1.3.3 |                                                                       |          |
| 1.3.4 | ,                                                                     |          |
| 1.3.5 | <u> </u>                                                              |          |
| 2.    | DESCRIPTION OF THE PROPOSED ACTIVITY                                  | 8        |
| 2.1.  | Encapsulation methods                                                 | 8        |
| 2.2.  | Other methods of enclosing biofouling for treatment                   | 9        |
| 2.3.  | Use of biocides and other additives                                   | 10       |
| 2.3.1 | Natural and enhanced deoxygenation                                    | 10       |
| 2.3.2 | P. Freshwater and hot water                                           | 11       |
| 2.3.3 |                                                                       |          |
| 2.3.4 | Recommended biocide                                                   | 13       |
| 3.    | DESCRIPTION OF THE NATURE OF THE DISCHARGE                            | 15       |
| 3.1.  | Discharge volume and rate                                             | 15       |
| 3.2.  | Residual chlorine                                                     | 16       |
| 3.3.  | Residual cyanuric acid                                                | 16       |
| 3.4.  | Dissolved oxygen                                                      |          |
| 3.5.  | Organic matter                                                        |          |
| 3.6.  | Dissolved sulphides                                                   |          |
| 3.7.  | Salinity and pH                                                       |          |
| 3.8.  | Frequency of cleaning at a given location                             |          |
| 4.    | DESCRIPTION OF TREATMENT PRIOR TO DISCHARGE                           |          |
| 4.1.  | Residual chlorine                                                     |          |
| 4.1.1 |                                                                       |          |
| 4.1.2 |                                                                       |          |
| 4.1.3 |                                                                       |          |
| 4.1.4 | 1. Recommended treatment of residual chlorine                         | 22       |
| 4.2.  | Dissolved oxygen                                                      | 23       |
| 4.3.  | Organic matter                                                        |          |
| 4.4.  | pH                                                                    | 24       |
| 5.    | DESCRIPTION OF THE RECEIVING ENVIRONMENT                              |          |
| 5.1.  | Selection of treatment locations for rapid and efficient treatment    |          |
| 5.2.  | Selection of treatment locations for minimising environmental effects |          |
| 5.3.  | Mixing zones                                                          |          |
|       | Summary                                                               |          |
| 5.4.1 | •                                                                     |          |
| 6.    | ASSESSMENT OF POTENTIAL EFFECTS ON THE ENVIRONMENT                    |          |
|       |                                                                       |          |
|       | Effects during treatment                                              | 29<br>29 |
|       |                                                                       |          |

| 6.1.2.        | Leakage                                                      | 29 |
|---------------|--------------------------------------------------------------|----|
| 6.2. E        | Effects after treatment                                      | 30 |
| 6.3.          | Compliance with coastal marine water-quality standards       | 31 |
| 6.3.1.        | Nelson City Council                                          | 31 |
| 6.3.2.        | Tasman District Council                                      | 32 |
| 6.4. F        | Residual biosecurity risk                                    | 32 |
| 7. F          | RECOMMENDATIONS FOR CONSENT CONDITIONS                       | 34 |
| 8. V          | WORKED EXAMPLE OF THE TREATMENT OF A VESSEL                  | 36 |
| 8.1.          | Description of the proposed activity                         | 36 |
| 8.1.1.        | Vessel dimensions                                            |    |
| 8.1.2.        | Amount of dichlor added                                      | 36 |
| 8.1.3.        | Duration of treatment                                        |    |
| 8.1.4.        | Assessment of viability of fouling after treatment           |    |
| 8.2.          | Description of the receiving environment                     | 37 |
| 8.3. N        | Nature of the discharge                                      | 39 |
| 8.3.1.        | Volume of discharge                                          | 39 |
| 8.3.2.        | Residual chlorine                                            | 39 |
| 8.3.3.        | Residual cyanuric acid                                       |    |
| 8.3.4.        | Dissolved oxygen, organic matter, dissolved sulphides and pH |    |
| 8.4. 7        | Treatment prior to discharge                                 | 40 |
| 8.4.1.        | Neutralisation of residual chlorine                          | 40 |
| 8.4.2.        | Organic matter                                               | 40 |
| 8.5. <i>A</i> | Assessment of effects on the environment                     | 40 |
| 8.5.1.        | Spillage                                                     | 40 |
| 8.5.2.        | Leakage                                                      | 40 |
| 8.5.3.        | Dilution of discharged contaminants by mixing                |    |
| 8.5.4.        | Removal of other waste materials                             |    |
| 8.5.5.        | Summary of environmental effects                             | 42 |
| 9. <i>A</i>   | ACKNOWLEDGEMENTS                                             | 43 |
| 10. F         | REFERENCES                                                   | 44 |
| 11. <i>A</i>  | APPENDICES                                                   | 47 |

# **LIST OF TABLES**

| Table 1.   | Estimated volume of encapsulated water for different sizes and types of recreational boats and for the trawler used in the worked example. Volumes are shown for differen widths of the gap between the hull and the encapsulating material. 'LWL' length at waterline, 'TWSA' total wetted surface area.                                                                                                                                                                        |        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Table 2.   | Amount (kg) of dichlor required to provide different concentrations of FAC for different volumes of encapsulated water ('Volume'). The column for 200 mg/L would be used to set up the treatment initially and other columns used to restore the concentration during treatment, based on the difference between the measured concentration and the target concentration (200 mg/L). The volume of encapsulated water in the worked example (section 8, trawler) is highlighted. | )<br>) |
| Table 3.   | Amount (g) of sodium thiosulphate required to neutralise ( <i>i.e.</i> reduce the concentration to < 0.5mg/L) a given residual concentration of FAC for different volumes of encapsulated water ('Volume'). Values are based on a mass ratio of 1.86:1 sodium thiosulphate to FAC. The volume of encapsulated water in the worked example (section 8, trawler) is highlighted.                                                                                                   | า      |
| LIST O     | F FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| Figure 1.  | Examples of encapsulation using a floating dock and a plastic sheet (photo credits:                                                                                                                                                                                                                                                                                                                                                                                              | •      |
| Figure 2.  | Matt Smith, NIWA and Bruce Lines, Diving Services NZ Ltd)                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| LIST O     | F APPENDICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| Appendix 1 | Estimation of volume of encapsulated water                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47     |
| Appendix 2 | Material safety data sheet for dichlor                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48     |
|            | . Material safety data sheet for sodium thiosulphate                                                                                                                                                                                                                                                                                                                                                                                                                             | 55     |
| Appendix 4 | residual chlorine with sodium thiosulphate                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61     |

# **GLOSSARY**

| Term                   | Definition                                                                                                                                                                   |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 96-hr LC <sub>50</sub> | Concentration of a toxicant that is lethal to 50% of the test organisms exposed for 96 hours ( <i>i.e.</i> , acute toxicity).                                                |
| 14-d LC <sub>50</sub>  | Concentration of a toxicant that is lethal to 50% of the test organisms exposed for 14 days ( <i>i.e.</i> , chronic toxicity).                                               |
| °C                     | Degrees Celsius                                                                                                                                                              |
| μg/L                   | Micrograms per litre (parts per billion)                                                                                                                                     |
| μm                     | Micron                                                                                                                                                                       |
| ANZECC                 | Australia and New Zealand Environment and Conservation Council                                                                                                               |
| Ca                     | Calcium                                                                                                                                                                      |
| cm                     | Centimetre                                                                                                                                                                   |
| DO                     | Dissolved oxygen                                                                                                                                                             |
| EC                     | Effective concentration – toxicant concentration causing an observable adverse effect $(e.g., death or serious incapacitation)$ in a given percentage of the test organisms. |
| FAC                    | Free available chlorine, composed of hypochlorous acid (HOCl) and the hypochlorite ion (OCl <sup>-</sup> ).                                                                  |
| g/m <sup>3</sup>       | Grams per cubic metre                                                                                                                                                        |
| L/s                    | Litres per second                                                                                                                                                            |
| MAF                    | Ministry of Agriculture and Forestry                                                                                                                                         |
| mg/kg                  | Milligrams per kilogram (parts per million)                                                                                                                                  |
| mg/L                   | Milligrams per Litre (parts per million)                                                                                                                                     |
| NCC                    | Nelson City Council                                                                                                                                                          |
| NIWA                   | National Institute of Water and Atmospheric Research                                                                                                                         |
| NOEC                   | No observed effect concentration – the highest concentration of a toxicant that produces no detectable response in the test organisms at a specific time of observation.     |
| NRC                    | Northland Regional Council                                                                                                                                                   |
| 0                      | Oxygen                                                                                                                                                                       |
| TOS                    | Top of the South (Island)                                                                                                                                                    |
| US EPA                 | United States Environmental Protection Agency                                                                                                                                |
| Vector                 | The means by which an introduced species is transferred from one place to another.                                                                                           |

## 1. INTRODUCTION

# 1.1. Background

The three Top of the South (TOS) councils (Marlborough District Council [MDC], Nelson City Council [NCC] and Tasman District Council [TDC]), together with the Ministry for Primary Industries and iwi, are the key agencies that form the TOS Marine Biosecurity Partnership. This Partnership is working towards reducing marine biosecurity risk in the TOS, recognising that marine pests can significantly impact the region's values. Despite considerable effort to manage the pathways that introduce or facilitate the spread of marine pests, high-risk vessels continue to arrive in the TOS from overseas, or from other parts of New Zealand, and must be managed. A recent study (Floerl *et al.* 2015, in press) has informed the three TOS councils on the feasibility, costs and benefits of implementing different vector treatment measures.

The biosecurity risk from the arrival of fouled boats must be dealt with rapidly. Options currently available are:

- Land-based: remove the boat from the water, followed by either water-blast or manually remove any biofouling, or leave the boat out of water for sufficient time so biofouling dries and dies. Facilities for this option are present at:
  - Waitapu Bay, Golden Bay (slipway and hardstand)
  - Port Tarakohe (haul-out and storage)
  - Port Motueka (slipways, haul-out)
  - Mapua (tidal grid)
  - Nelson (inspection grid, haul-out and storage, slipways)
  - Havelock (slipway, haul-out and storage)
  - Picton (slipway)
  - o Waikawa (haul-out and storage, slipway).
- Water-based: clean the hull with brushes or other equipment (generally using commercial divers), or enclose ('encapsulate') the hull with an impermeable wrap, causing the biofouling to die from lack of oxygen. Encapsulation treatment can be expedited by the addition of a biocide. Commercial divers are available at Nelson and Picton.

In assessing these options, Floerl et al. (2015, in press) noted that:

In addition to marina and port infrastructure, the region has boat ramps, slipways and haul-out facilities, with Nelson and Picton being the largest providers. These facilities cater for small-to-medium craft (< 80 m) and are generally available at short notice (e.g. during a pest response) throughout the year. An exception is the Calwell Slipway, where advance bookings are required unless there is a cancellation.

This was highlighted during the recent Voyager P response, where there was a 3-week delay before the boat could be slipped. At present, there are no land-based facilities for larger boats (> 80 m) for either maintenance or treatment activities.

The TOS is well placed in terms of specialised diving services in the region, with the three main operators having been involved with biosecurity-related activities. Of note is the considerable collective expertise in encapsulation methods, which has now been applied to wharf piles, marina pontoons and boats up to 110 m in length. Over the past decade, the range of in-water cleaning/treatment technologies has increased considerably to meet a growing and changing demand (e.g., due to advances in paint technologies). Some of the emerging treatment technologies are not presently available in the TOS (e.g. cavitation, floating docks) and nationally (e.g. ultrasonic methods). Once the performance and benefits of the new floating dock system operated by Northland Regional Council has been ascertained in more detail, this technology in particular could be a useful avenue for treating biofouling on small craft boat in the TOS, both as a pre-emptive maintenance measure and as a response option.

# 1.2. Aim of this study

An effective treatment to kill biofouling on exposed hull surfaces and internal piping is to encapsulate the hull and add a biocide to the volume of water trapped between the hull and the wrapping material (Coutts & Forrest 2005, 2007, Roche *et al.* 2014, Atalah *et al.* manuscript in preparation, Morrisey *et al.* manuscript in preparation). However, there are several challenges in using this treatment. A resource consent may be required to discharge water containing a biocide and the consenting process takes time. This may prevent a rapid response to the arrival of a high-risk vessel. This was demonstrated recently with the treatment of the 21-m fishing boat *Voyager P* in Nelson, when consent to use a biocide could not be obtained quickly. Encapsulation without the addition of a biocide was not completely effective and viable biofouling was left on the hull after treatment.

The aim of the present study is to provide the information on environmental effects of encapsulation with biocide required by NCC and TDC, and potentially other councils in New Zealand, to process consents more rapidly. It may also facilitate the implementation of a general (or 'blanket') consent for the treatment of high-risk vessels using wrapping and specified treatment chemicals, an approach that has been adopted by Northland Regional Council (NRC; consent number 036500.01.01, February 2014). The information provided in this report will benefit other councils in their consenting processes.

The study consists of the following elements:

- Description of the proposed activity, including recommendation of a preferred biocide.
- Description of the nature of the discharge from encapsulation with the recommended biocide.
- Description of any treatment of the encapsulated water prior to discharge to avoid or mitigate environmental effects.
- Description of the receiving environment in terms of recommendations for suitable treatment locations in the TOS.
- Assessment of effects on the environment.
- Recommendations for consent conditions.

# 1.3. Planning, policy and regulatory context

A detailed assessment of how the treatment methods recommended by this report align with council policy and planning, and how they comply with regulations, is beyond the scope of the present study. However, a brief overview of the planning, policy and regulatory context in which the methods might be used is provided here (see also Floerl *et al.* 2015, in press).

In addition to the information provided in the following sections, it should be noted that if a substance has not previously been approved for use as a biocide, approval may be required from the Environmental Protection Authority.

#### 1.3.1. Biosecurity Act 1993

Under the Biosecurity Act 1993, regional councils provide leadership in "activities that prevent, reduce, or eliminate adverse effects from harmful organisms that are present in New Zealand (pest management) in its region". Amongst other powers, each council has the power to provide for the assessment and eradication or management of pests, in accordance with relevant management plans (s 13).

Section 52 of the Act prohibits knowingly communicating, causing to be communicated, releasing, causing to be released, or otherwise spreading any pest or unwanted organism. Under s 122, councils can issue Notices of Direction requiring that fouled vessel be cleaned before entering, travelling within or leaving their jurisdiction. This power has been used by Northland Regional Council, for example, in

their response to the Mediterranean fanworm (*Sabella spallanzanii*) and the seaweed *Undaria pinnatifida*<sup>1</sup>.

#### 1.3.2. Craft Risk Management Standard for vessel biofouling

The Craft Risk Management Standard (CRMS $^2$ ), administered by the Ministry for Primary Industries (MPI), requires that vessels entering New Zealand complete a biofouling declaration and arrive with a 'clean hull' in accordance with specified biofouling thresholds. There are two different thresholds: 'long–stay vessels' (vessels staying in New Zealand for > 20 days) are not allowed to arrive with more than a slime layer and goose barnacles on their entire submerged hull surface. 'Short–stay vessels' (vessels staying  $\leq$  20 days) are allowed to have more fouling, but it is restricted to macroalgae and very low abundance of one type of sessile animal biofouling such as barnacles, tubeworms or bryozoans.

One way that fouled vessels can comply with the CRMS is to treat their hulls within 24 h of arrival, and encapsulation may provide a method for doing this. Confirmation of the acceptability to MPI of this method of treatment may be required because encapsulation kills fouling but does not necessarily remove it from the hull. MPI will provide a list of approved treatments for foulingon their website in the future.

The CRMS comes into force in May 2018, following a four-year voluntary lead-in period. The lead—in period is intended to allow for the development and implementation of improved biofouling management technologies and practices within the shipping industry.

#### 1.3.3. Resource Management Act 1991

The purposes of the Resource Management Act (RMA) 1991 is to promote sustainable management of natural and physical resources while safeguarding, among other things, the life-supporting capacity of air, water, soil and ecosystems. The Act also requires that any adverse effects of activities on the environment be avoided, remedied or mitigated.

The following sections of the Act are particularly relevant to the treatment of fouled vessels by encapsulation and the addition of a biocide.

Section 12(1)(d) stipulates that no person may deposit in, on, or under any
foreshore or seabed any substance in a manner that has or is likely to have an
adverse effect on the foreshore or seabed unless the discharge is allowed by a
national standard or other regulations, a rule in a regional plan, or a resource
consent. Fouling dislodged from the hull of a boat as a result of the treatments
proposed in this study would fall under this rule. Section 12(1)(f) is also relevant in

<sup>&</sup>lt;sup>1</sup> See http://www.nrc.govt.nz/Resource-Library-Summary/Environmental-Monitoring/State-of-the-Environment-Monitoring/Our-coast2/Marine-biodiversity-and-biosecurity/#A4.

<sup>&</sup>lt;sup>2</sup> See http://www.biosecurity.govt.nz/files/regs/ships/crms-biofouling-standard.pdf

the present context because it states that no person may introduce or plant any exotic or introduced plant in, on, or under the foreshore or seabed. Again, this would apply to fouling algae dislodged from the hull of a boat. Whether this prohibition is applied may depend on the amount of material deposited.

- Section 15(1)(a) prohibits the discharge of contaminants or water into water unless the discharge is allowed by a national standard or other regulations, a rule in a regional plan, or a resource consent. Discharge to water may be direct (s (15(1)(a)) or indirect via discharge to land (s 15(1)(b)). The discharge of encapsulated water containing residual biocide following treatment of fouling would fall under this rule, whether it occurs by release directly in to the surrounding water body or via pumping onto the adjacent foreshore.
- Section 15A(1)(a) prohibits the dumping of any waste or other matter from any ship or offshore installation unless allowed by a resource consent.
- Similarly, s 15B(1) prohibits the discharge of water or contaminants from a ship or
  offshore installation into water unless permitted or controlled by regulations in the
  Act, a rule in a regional coastal plan, a resource consent or if, after reasonable
  mixing, the water or contaminant discharged is not likely to give rise to significant
  adverse effects on the receiving environment, including aquatic life.
- Discharges and dumping of waste from ships and offshore installations are controlled through the Resource Management (Marine Pollution) Regulations 1998. The regulations allow discharges made as part of normal operations of a ship or offshore installation, but this explicitly excludes the discharge of material derived from cleaning the exterior of the hull.
- Harmful substances defined under Regulation 3 of the Resource Management (Marine Pollution) Regulations 1998 include "drainage from spaces on a ship or offshore installation containing living animals" and waste water that is mixed with such drainage.
- The use of Section 330 of the Act has been proposed as a mechanism for taking emergency action to treat a vessel that arrives unexpectedly and with a high biosecurity risk (pers. comm. Jonno Underwood, Marlborough District Council). Section 330 applies where any natural and physical resource or area for which a local authority or consent authority has jurisdiction is affected by, or likely to be affected by, an adverse effect that requires immediate preventive or remedial measures. In such a situation, s 12 and s 15 (among others) do not apply to any activity undertaken to remove the cause of, or mitigate any actual or likely adverse effect of, the emergency.

#### 1.3.4. New Zealand Coastal Policy Statement

Objective 1 of the New Zealand Coastal Policy Statement (NZCPS) is to safeguard the integrity, form, functioning and resilience of the coastal environment and sustain its ecosystems by:

- maintaining or enhancing natural biological and physical processes in the coastal environment and recognising their dynamic, complex and interdependent nature
- protecting representative or significant natural ecosystems and sites of biological importance and maintaining the diversity of New Zealand's indigenous coastal flora and fauna
- maintaining coastal water quality, and enhancing it where it has deteriorated from what would otherwise be its natural condition, with significant adverse effects on ecology and habitat, because of discharges associated with human activity.

Policy 12 of the NZCPS provides for the control of activities that could have adverse effects on the coastal environment by causing the release or spread of harmful aquatic organisms (HAO). These activities may include the introduction of structures likely to be contaminated with HAO, and the discharge of organic material from vessels (for example, during cleaning). Management of these activities may include conditions in resource consents.

Policy 23(1) requires that management of discharges to water should have particular regard to:

- the sensitivity of the receiving environment
- the nature of the contaminants to be discharged, the particular concentration of contaminants needed to achieve the required water quality in the receiving environment, and the risks if that concentration of contaminants is exceeded.
- the capacity of the receiving environment to assimilate the contaminants.
- avoid significant adverse effects on ecosystems and habitats after reasonable mixing
- use the smallest mixing zone necessary to achieve the required water quality in the receiving environment
- minimise adverse effects on the life-supporting capacity of water within a mixing zone.

## 1.3.5. Resource Management Plans

## **Nelson Resource Management Plan**

Nelson City Council's Resource Management Plan, Coastal Policy CM6.3 (Discharges (general)) states that:

"Discharges to coastal water should not, after reasonable mixing, result in a breach of classification standards or a reduction in water quality and the discharge should not (either by itself or in combination with other discharges) give rise to any significant adverse effects on habitats, feeding grounds or ecosystems."

The water-quality class FEA (fisheries, fish spawning, aquatic ecosystems and aesthetic purposes) applies throughout the Coastal Marine Area. The coastal marine water-quality standards for the FEA class, to apply after reasonable mixing, are listed in Section 6.3.1 of this report.

#### **Tasman Resource Management Plan**

Rule 36.2.2.8 (Discharge of Water) of the Tasman Resource Management Plan states that:

The discharge of water into water is a permitted activity that may be undertaken without a resource consent, if it complies with the following conditions:

- a. The discharge does not cause erosion of the bed of any river or stream.
- b. The discharge does not contain more than 0.5 grams per cubic metre of free or residual chlorine.
- c. Except as provided for in condition (a), the discharge does not contain contaminants other than heat.
- d. When the natural temperature of the water is less than 20 degrees Celsius, the water temperature is not increased by more than 3 degrees Celsius and in any event does not exceed 20 degrees Celsius. When the natural temperature of the water is 20 degrees Celsius or greater, there is no increase in water temperature.
- e. Except as provided for by conditions (g) and (h), the rate of discharge does not exceed 5 litres per second.
  (Note that conditions (g) and (h) relate to discharges from dams and hydro-electric power generation).

If the discharge does not comply with these conditions, a resource consent is required.

#### **Marlborough Sounds Resource Management Plan**

Objective 9.3.2.1 of the Plan is to manage the effects of activities so that water quality in the coastal marine area is at a level which enables the gathering or cultivating of shellfish for human consumption (all marine waters in the district are currently classified to this standard). The policies to achieve this include:

- Avoid the discharge of contaminants into the coastal marine area where it will modify, damage or destroy any significant ecological value.
- No discharge, after reasonable mixing, (either by itself or in combination with other discharges) should limit the consumption of seafood from the coastal marine area.

Standards for the shellfish gathering and contact recreation standards are currently being reviewed.

## 2. DESCRIPTION OF THE PROPOSED ACTIVITY

This section describes the proposed activity in terms of the available options for encapsulating the hull of a fouled vessel, and the mechanisms by which fouling is killed during encapsulation. This treatment can be enhanced and accelerated by adding a biocide, and these types of biocide are also described. The section ends with a recommendation of the most appropriate biocide for routine use. Subsequent sections of the report are based on the use of this biocide.

# 2.1. Encapsulation methods

Encapsulation, with the addition of a biocide to the encapsulated water, is proposed for eliminating the biosecurity risk posed by hull biofouling. Encapsulation kills biofouling either by restricting the exchange of water, leading to deoxygenation as fouling organisms respire, or by enclosing organisms with an added biocide. When deoxygenation is the mechanism of control, microbial organisms will also consume oxygen as they decompose dead fouling organisms. Microbial decomposition will eventually also generate toxic dissolved sulphides.

Encapsulation may be achieved by several methods, including:

- 1. Divers wrapping the hull with strips of plastic sheeting, similar to silage wrap (0.75 m × 1,500 m × 25 μm). Strips overlap and are sealed with waterproof tape. It may be difficult (or impossible) to create a seal that prevents an exchange with the surrounding water, particularly if the hull shape is complex and/or has protrusions (such as keels and stabilisers). The volume of water encapsulated using this method may be small compared with other methods of encapsulation, particularly if the shape of the hull is simple and the wrap is tightly applied.
- 2. Enclosing the hull in a flat, plastic sheet that is passed under the hull and then secured on all sides above the water line (either to the superstructure of the boat, or to the adjacent berth). The boat sits in this 'bag' in a volume of water that depends on the size of the sheet. Sheets specifically designed for this purpose are currently in development. Other options include using silage covers (6–15 m × 300 m × 150 μm; Pannell & Coutts 2007, Coutts & Forrest 2007, Denny 2007; pers. comm. Diving Services New Zealand Ltd). Specifically-designed systems, such as the IMProtector (http://www.biofoulingsolutions.com.au/featured-projects/improtector), are made of material that is resistant to cutting, tearing and abrasion and are fitted with floatation collars and ballast chains (Aquenal 2009). They are towed into position around the hull from a support vessel. Divers are not necessarily required for deployment.
- 3. Enclosing the boat in a commercially available, purpose-built floating dock<sup>3</sup>. The dock consists of an inflatable 'collar' supporting an impermeable bag. Part of the

\_

<sup>&</sup>lt;sup>3</sup> See, for example http://www.incept.co.nz/categories/fab-dock.

collar (the 'gate') is deflated and lowered to allow the boat to enter the dock. The collar is then re-inflated to create a rim around the dock above water-level. This prevents water and any biofouling material dislodged from the hull from escaping. Divers are not necessarily required for deployment.



Figure 1. Examples of encapsulation using a floating dock and a plastic sheet (photo credits: Matt Smith, NIWA and Bruce Lines, Diving Services NZ Ltd).

Once the boat has been enclosed, encapsulated water may be pumped out to increase the rate of deoxygenation or to reduce the volume of biocide that must be added to achieve the target treatment concentration. In the case of floating docks, the floor of the dock may be fitted with ribs that can be inflated while the gate is open, expelling excess water from around the boat. Some docks also have a pump installed at floor level inside the dock. However, there is an optimal volume of water that must be encapsulated to ensure that biofouling organisms are exposed to oxygen depletion or lethal concentrations of biocide.

Although floating docks cost more initially, they are reusable. Plastic sheets (particularly those that are purpose-made for encapsulating boat hulls, such as the IMProtector) may also be recoverable and reusable after treatment, but plastic wrapping strip is generally not. This has implications both for cost and for environmental effects because wrapping strip must be unwrapped, recovered and disposed of after use.

# 2.2. Other methods of enclosing biofouling for treatment

Where biofouling is confined to a limited area of the hull, it may not be necessary to encapsulate the whole hull. One particular part of the hull where this may apply is sea chests of larger ships. These are cavities in the hull containing intakes for seawater for use as ballast, fire-fighting and other uses. They are covered by grills, flush with the hull, that prevent large debris from being entrained with the water.

Commonly used 'self-polishing' antifouling coatings rely on the flow of water to continually 'renew' the surface of the coating and maintain the rate of release of antifouling biocides. These antifouling coatings do not function properly when applied to the inside of sea chests because they are sheltered from water movement when the ship is under way. Consequently, biofouling often develops to a much greater degree than on more exposed surfaces of the hull. Fouling organisms inside sea chests are also sheltered from strong water movement and from larger predators.

Sea chests can be closed off using blanking plates while the ship is in the water. Biocidal solutions, such as chemical biocides, hot water or freshwater, can then be pumped into the sea chest to treat biofouling.

## 2.3. Use of biocides and other additives

Field and laboratory studies suggest that the likelihood of success of encapsulation in treating biofouling is increased, and the treatment time greatly reduced, by adding a biocide to the encapsulated water. Rapid treatment is important when the inconvenience and cost of voyage delays may act as a disincentive to treatment.

#### 2.3.1. Natural and enhanced deoxygenation

The effectiveness of encapsulation for treating fouled ships and other floating structures has been demonstrated in a number of experimental and 'real' situations (Coutts & Forrest 2005, 2007, Roche 2014). Deoxygenation of the enclosed water will occur during encapsulation by the respiration of the fouling organisms and of microbes that decompose dead biofouling. The rate of deoxygenation depends on several factors, including the amount of biofouling, the amount of water enclosed, ambient temperature and the effectiveness of the encapsulation at preventing exchange of water with the surrounding environment. Prevention of exchange is particularly difficult if the hull shape is complex and wrapping is done with strips of material.

If concentrations of dissolved oxygen (DO) can be kept low enough for long enough, it will be effective at killing fouling organisms. However, experimental studies (Atalah *et al.* manuscript in preparation) have shown that this can take from days to weeks, depending on the rate of deoxygenation and the susceptibility of different types of fouling organisms. Bivalve molluscs and some species of bryozoans (including non-indigenous species), both common components of biofouling assemblages, appear to be particularly resistant to low DO concentrations and may require encapsulation for up to two weeks.

Rates of deoxygenation can be increased by adding additional substrate for microbial decomposition, such as sugar, molasses or whole milk (Clearwater *et al.* 2008). The amount of substrate required will be dependent on the ambient temperature and the biomass of biofouling. As a result, the rate of deoxygenation may still be slow or, conversely, the substrate may not all be used up and may cause unwanted deoxygenation when released into the surrounding environment.

An alternative approach is to add oxygen-scavenging agents, such as sodium thiosulphate and sodium sulphite, to remove oxygen from solution. Sodium sulphite is used to remove oxygen from boiler waters and during pulp and paper processing (Clearwater *et al.* 2008). Some suitable agents, such as sodium thiosulphate, have low toxicity but others (sodium sulphite, sodium bisulphite and sodium metabisulphite) are toxic and classified as harmful to aquatic life. This poses a risk to biological communities around the treatment site if residual chemicals are released after treatment, both from direct toxic effects and from unwanted deoxygenation.

#### 2.3.2. Freshwater and hot water

The simplest biocides available are freshwater and hot water (salt or fresh). Rolheiser et al. (2012) used freshwater to control fouling organisms and predators on oyster farms. Both methods have also been trialled successfully for treating biofouling on aquacultured mussel seed-stock (Forrest & Blakemore 2006). However, some species of biofoulers are tolerant of freshwater and the required exposure time may be very long. Bivalves, in particular, can remain with their shells closed for several days when exposed to freshwater. Hot water is impractical for use with encapsulation if there is a relatively large amount of encapsulated water. Use of hot water is feasible for treating specific parts of the hull, such as seachests (Piola & Hopkins 2012). Very hot water may potentially damage the wrap and can also compromise the antifouling coating of the hull (Morrisey & Woods 2014), though this is not likely to be a problem on heavily fouled boats because the coating has clearly already failed.

#### 2.3.3. Chemical biocides

Several easily-available, non-persistent biocidal chemicals have been trialled for control of biofouling. These include chlorine solution, acetic acid (CH<sub>3</sub>COOH, usually at a concentration similar to that of vinegar, ca 5%), brine and lime (quicklime, CaO, or hydrated lime, Ca(OH)<sub>2</sub>). The reaction products of these chemicals are also non-persistent.

Household cleaners and antiseptics can also be effective in treating marine pests (Dunmore *et al.* 2011). We have not considered these in the present context, however, because they may not break down so readily in the environment and may have persistent reaction products. These properties may create obstacles to the consenting process.

Piola *et al.* (2010) compared the effectiveness of acetic acid, hydrated lime and hypochlorite (bleach) at eradicating biofouling organisms. They, and an earlier study by Carver *et al.* (2003), concluded that acetic acid was the most effective. Low concentrations of acetic acid (5%) appeared just as effective at removing most taxa as the high concentrations (20%), even at very short exposure times (0.5 h). Sodium hypochlorite was the next most successful chemical in removing fouling biota, but it was only effective at the highest concentration (20%). Hydrated lime appeared the least effective chemical at removing fouling taxa. Only in a few instances was it able to remove the majority (75–100%) of biota, and only at high concentrations (10–20%) following long exposure times (4–6 h).

In an experimental study comparing the effectiveness of encapsulation with and without the addition of acetic acid (Atalah *et al.* manuscript in preparation), the recommended treatment time for bivalves and resistant bryozoans was reduced from > 14 d to 2 d when acetic acid was added (to achieve a concentration of 5% in the encapsulated water). During the treatment of biofouling on the launch *Columbus* in Nelson, difficulties in preventing exchange between the encapsulated and surrounding water maintained DO at concentrations too high to kill biofouling within a reasonable time-frame (pers. comm. Javier Atalah, Cawthron Institute). Addition of acetic acid, and repair to the wrapping, led to a rapid reduction in DO to lethal concentrations, presumably due to the death and decay of fouling organisms caused by the acid.

Of the potentially suitable biocides listed above, chlorine solution is recommended for the present purpose, despite the finding of some previous studies that acetic acid is more effective at treating some biofouling taxa. These earlier studies were done at a small scale: Piola *et al.* 2010 studied effects on biofouling on experimental panels measuring 20 cm × 20 cm. Treatment at the much larger scale of whole hulls presents significantly different logistical problems, including health and safety issues. Piola *et al.* (2010) also used commercial bleach solution, which typically contains 3–10% available chlorine, and this was diluted to 5–20% of the original concentration for their study. The biofouling was consequently exposed to a low concentration of available chlorine. Bleach also contains chlorine in a relatively unstable and easily degraded form, as discussed below.

A much higher initial concentration of available chlorine (200 mg/L), in combination with wrapping in polythene, was used in the successful treatment of *Didemnum vexillum* on barges in Shakespeare Bay, Queen Charlotte Sound (Coutts & Forrest 2007).

Chlorine was also successful in treating heavy biofouling (including large numbers of *Sabella spallanzanii* on the hull an 8-m long yacht by encapsulation (Morrisey *et al.* 2015). This operation made use of a floating dock (FAB Dock, http://fabdock.com), normally used to prevent biofouling on boats while at their berths. It was purchased by

NRC specifically for treating fouled boats. The trial was done in Westhaven Marina, Waitemata Harbour.

Chlorine solution was applied once, at an initial concentration of free available chlorine (FAC) of 200 mg/L. Chlorine in solution is consumed by reaction with organic matter, is volatilised and is also photolysed by UV light. In the floating dock trial, chlorine was added as a solution of sodium dichloroisocyanurate (dichlor), commonly used for chlorination of swimming pools. Commercial grades of dichlor (CAS 51580-86-0) are usually the dihydrate form and contain 55–56% available chlorine by weight. Dichlor reacts with water to produce hypochlorous acid and cyanuric acid. Cyanuric acid acts as a UV-light stabiliser for the chlorine. It has a low acute toxicity (see Section 3.3). Other common chlorine-containing chemicals, such as bleach, are not stabilised and degrade faster.

Although the concentration of FAC in the floating dock decreased from 200 mg/L to 50 mg/L after 2 h, and to < 10 mg/L after 16 h, in the floating dock trial (Morrisey *et al.* 2015), a single dosing of 200 mg/L of free available chlorine was effective in killing all biofouling after 16 h exposure, including fanworms, oysters and mussels. Supporting laboratory studies demonstrated that a 4-h exposure of *Sabella spallanzanii* (in their tubes) to this concentration killed more than 99% of adult worms and was recommended as a treatment regime for this species.

Chlorine is widely used as a cleaning or sterilising agent. A solution of chlorine can be prepared using easily-obtained, low-cost chemicals, such as dichlor. In contrast, the treatment of the launch *Columbus* in Nelson used 220 L of glacial acetic acid over the course of 7 d (though the large volume required may have been partly due to leakage from the wrapping). Glacial acetic acid is mildly corrosive to metals, corrosive to skin and is a strong eye, skin and mucous membrane irritant. Safe transport and handling of this amount of the liquid poses much greater problems than are involved with dichlor. Glacial acetic acid is also more expensive than dichlor: the 220 L of acetic acid used to treat the *Columbus* cost ca NZD\$450 (pers. comm. Bruce Lines, Diving Services New Zealand Ltd) compared with ca NZD\$35 for the 3.6 kg of dichlor used in the floating dock trial.

It is worth noting that sodium diacetate (in powder form) can be used as an alternative to acetic acid and has fewer logistical and safety problems (pers. comm. Barrie Forrest, Cawthron Institute). There is some evidence that the biocidal effects of acetic acid and, by extension, sodium diacetate are a function of the compound itself, rather than of the reduction in pH (Forrest *et al.* 2007).

#### 2.3.4. Recommended biocide

Based on its demonstrated effectiveness, ease of use, and health and safety considerations, we recommend the use of chlorine solution as a biocide in

combination with encapsulation. The initial target concentration of free available chlorine should be 200 mg/L and should be maintained for at least 4 h. Maintaining this concentration will almost certainly require monitoring of FAC concentration and periodic redosing.

The safest and most convenient method of creating the solution is to dissolve dichlor granules in seawater before adding to the encapsulated water. During the treatment, chlorine testing strips (designed for testing swimming pool water) can be used for convenient measurement of chlorine concentrations in the ranges of, for example, 0.5–10 mg/L and 0–600mg/L. The Materials Safety Data Sheet (MSDS) for dichlor is shown in Appendix 2.

Additional dichlor can be added if necessary to maintain the target concentration over the treatment period. At the end of the treatment, residual chlorine can be removed with a non-toxic neutralising agent (see section 4.1.2). Appendix 4 Table 2 contains a look-up table for dosing and re-dosing a given volume of encapsulated water with dichlor to achieve a concentration of 200 mg/L.

Dichlor is available as pellets and relatively small amounts are needed. In the yacht treatment trial in Auckland's Westhaven Marina (Morrisey *et al.* 2015), ca 3.6 kg of dichlor pellets were used in a single dose, added to 10 m<sup>3</sup> of water in the floating dock. This makes the treatment chemical relatively easy and safe to transport and handle. It can be mixed with seawater on site, minimising handling risks. Dichlor costs around NZD\$10/kg.

Based on this recommendation, the remainder of this report is restricted to the use of chlorine solution (derived from dichlor granules) during encapsulation.

## 3. DESCRIPTION OF THE NATURE OF THE DISCHARGE

When treatment of a vessel hull is completed, the wrapping material will be removed and the water contained within it will be discharged into the surrounding environment. This section of the report describes those properties of the discharged water that must be considered when assessing potential environmental effects:

- The volume and rate of discharge
- The nature of the discharge, including the concentrations of oxygen, chlorine and other contaminants and pH
- The frequency of discharge at a given location.

# 3.1. Discharge volume and rate

The volume of water to be discharged to the surrounding water body after treatment is very difficult to estimate and little information is available from previous encapsulation treatments. It depends on the size and shape of the hull and the type of encapsulation. Wrapping in plastic strip or sheet generally encloses a relatively small volume, but can be greatly increased when the hull shape is complex or has extensions such as bilge keels.

The amount of water enclosed in a floating dock will depend on the volume of the dock relative to that of the boat being treated, and how much water is pumped out of the dock once the boat is inside. The volume of water displaced by a 30–40 m long hull may be 80–150 m<sup>3</sup>.

FABdock, suppliers of the floating dock purchased by NRC, are able to provide docks for boats 5–35 m (15–100 ft: http://fabdock.com). NRC's floating dock is 18 m long, 6.6 m wide and is designed to accommodate boats up to 16 m long. It holds 200 m³ of water when completely full, some of which will be displaced by the boat being treated. The 8-m yacht treated in the trial displaced ca 2 m³, while a 16-m boat might displace 20–40 m³. In the trial, water was pumped out of the dock to leave an estimated residual volume of 10 m³ (Morrisey *et al.* 2015). Vertical ribs in the walls of the dock can be inflated once the boat is in the dock but before the gate is closed. This lifts the floor of the dock up and around the hull, minimising the volume of water that is enclosed.

A rough estimate of the water enclosed with an encapsulated hull can be derived from the area of the hull multiplied by the width of the gap between the hull and the encapsulating material (see Appendix 1). Estimated volumes of encapsulated water for different sizes of yacht and for a motor cruiser are shown in Appendix 1 Table 1, based on different sizes of gaps. The estimates for a tightly wrapped (5 cm gap) hull ranged from 1.1 m<sup>3</sup> for an 8-m yacht to more than 5 m<sup>3</sup> for a 30-m yacht.

These rough estimates suggest that the expected volumes of discharges from encapsulation treatments of vessels in the length range 8–30 m are likely to be of the order of less than 1 m<sup>3</sup> to a few tens of m<sup>3</sup>.

The rate of discharge of water from encapsulation is also highly variable. Rapid removal of a wrapping sheet or opening of a floating dock may release the bulk of the water over, say 15 min. Removal of wrapping strips is likely to take much longer, releasing water over an hour or longer.

The rate of discharge can be controlled via the use of a pump and would maximise dilution and dispersion of any residual biocides or water of low DO and also help to volatilise residual chlorine and replenish DO. For example, pumping at 330 L/min (5.5 L/s) would take 30 min to empty the estimated 10 m³ of water present in the floating dock during the treatment of the 8-m yacht.

#### 3.2. Residual chlorine

In the floating dock trial (Morrisey *et al.* 2015), the concentration of FAC in the main body of water in the floating dock had decreased from 200 mg/L at the start of the treatment to 50 mg/L after 4 h and 8 mg/L after 16 h. Concentrations measured at several locations on the hull of the boat were 1–3 mg/L after 16 h.

The laboratory study accompanying the field trial included a pilot experiment that measured the rate of decrease in the concentration of FAC over 4 h in the presence of live *Sabella spallanzanii* and their tubes. Free available chlorine concentration decreased by ca 70% (to 40–70 mg/L) in the 200 mg/L treatment and ca 85% in the 10 mg/L and 1 mg/L treatments (to 1.5 mg/L and 0.15 mg/L, respectively).

If the encapsulation treatment is run overnight and the hull being treated is moderately or heavily fouled, we would expect residual FAC concentrations to be < 10 mg/L by the end of treatment. If, after 4 h treatment, the water is encapsulated for a further 4 h, a residual concentration of ca 50 mg/L would be expected.

Methods for measuring and neutralising residual chlorine are described in Section 4.1.

# 3.3. Residual cyanuric acid

The only persistent agent present in the water discharged after encapsulation will be cyanuric acid, derived from dichlor. A single addition of dichlor to create a FAC concentration of 200 mg/L would produce a cyanuric acid concentration of ca 164 mg/L. Cyanuric acid is not readily biodegradable (OECD 301C; 0% after 14-

day) and is stable in water. The bioconcentration factor to fish is low (< 0.5 in carp after 6 weeks) and the toxicity of this chemical to aquatic organisms is also low<sup>4</sup>, as illustrated by the following data.

- The NOEC for reproduction and 48-EC<sub>50</sub> for immobilisation of *Daphnia magna* are 32 mg/L and 1,000 mg/L, respectively.
- Both the 96-h  $LC_{50}$  and the 14-day  $LC_{50}$  for the fish *Oryzias latipes* are > 100 mg/L.
- The 72-h NOEC and 72-h EC<sub>50</sub> for the alga *Selenastrum capricornutum* are 62.5 mg/L and 620 mg/L, respectively.

# 3.4. Dissolved oxygen

Dissolved oxygen concentrations in the encapsulated water during the floating dock trial (Morrisey *et al.* 2015) remained reasonably high throughout the treatment (around 80% of saturation, which is typically 7–8 mg/L at 20 °C). Chlorine is a general biocide and presumably, in addition to killing the biofouling, also kills the microbes that decompose dead biofouling and other organic material (consuming oxygen in the process).

In smaller-scale experiments in which fouled plates (20 cm × 20 cm) were encapsulated with and without the addition of 5% acetic acid, DO concentrations decreased to < 1 mg/L within 48 h in treatments without acetic acid (Atalah *et al.* manuscript in preparation). Dissolved oxygen concentrations were also reduced relative to controls in treatments to which acetic acid (5%) had been added, falling as low as 3 mg/L after 2 h and 2 mg/L after 4 h. Over longer periods (24 h and 48 h), however, DO concentrations recovered to 4–6 mg/L (ca 50–75%) in the acetic-acid treatment. Cover of live fouling organisms on the panels decreased from 80% to 0% after 2 h in the acetic-acid treatment and to 20% after 2 d in the no-acid treatment.

The lower rate of reduction in DO in the acetic acid treatment is consistent with the higher rate of mortality because there were fewer biofouling organisms and microbial decomposers alive to consume oxygen. Once all the biofouling was dead, DO concentrations recovered, presumably by diffusion from the surrounding water. The fact that DO concentration was initially reduced in the acetic-acid treatment contrasts with the lack of response of DO to application of chlorine in the floating dock study. This may indicate that 5% acetic acid did not kill biofouling as rapidly as dissolved chlorine at 200 mg/L. Alternatively, the much larger volume of water in the floating dock may have diluted any effects of consumption of oxygen, and the larger surface area of water and pumping to circulate the chlorine will have increased rates of replacement of any oxygen consumed.

<sup>&</sup>lt;sup>4</sup> See the website of the International Programme on Chemical Safety, http://www.inchem.org/documents/sids/sids/108805.pdf, accessed 18 May 2015.

These studies suggest that if chlorine is applied at the recommended concentration, DO concentrations are unlikely to be significantly reduced. Mixing of the encapsulated water by pumping would further reduce the risk of hypoxia (in addition to ensuring that all parts of the hull are exposed to chlorine solution).

# 3.5. Organic matter

Because encapsulation treats biofouling by killing it in situ, the amount of waste released from the hull is generally small compared to methods that scrape the biofouling off the hull. Sessile organisms are likely to remain attached to the hull after treatment. However, experimental trials suggest that free-living organisms among the biofouling and tube-living animals that are able to leave their tubes, are likely to fall off the hull when they die and be contained within the encapsulation. Unless it is captured, this dead organic material will be dispersed into the water column and onto the seafloor when the wrapping is removed.

# 3.6. Dissolved sulphides

Anaerobic decomposition of organic matter may create toxic hydrogen sulphide, and this is one of the mechanisms by which encapsulation kills biofouling. In the study with fouled panels, however, detectable concentrations of sulphides did not develop until the fourth day of encapsulation (Atalah *et al.* manuscript in preparation). It is unlikely that concentrations large enough to create a risk to the surrounding environment would develop during the relatively short treatment time proposed for encapsulation with chlorine (see Section 2.3.4), particularly since this treatment may inhibit or prevent microbial decomposition of organic matter.

# 3.7. Salinity and pH

The salinity of the encapsulated water is not expected to change from that of the ambient water body, from which it derives.

Dichlor solutions are neutral in pH (close to pH7: Pinto & Rohrig 2003), whereas the pH of seawater is typically in the range 7.5–8.2. The addition of dichlor may cause a very slight reduction in pH of the encapsulated water. Chlorine neutralisation agents (see Section 4.1.2) form acidic products (hydrochloric and, in some cases, sulphuric acid).

Seawater has a large capacity to buffer pH and, given the relative weights of seawater, dichlor and neutralising agent in the encapsulation, any change in pH is likely to be insignificant.

# 3.8. Frequency of cleaning at a given location

It is assumed that treatment includes a minimum of 4 h exposure to FAC followed by 4 h without re-dosing to allow the degradation of residual FAC, and the use of a floating dock located at the same station for the duration of the treatment of several boats (so that mobilisation and demobilisation times are eliminated). The maximum number of boats that could be treated in a day would then be one.

One treatment per day would allow adequate mixing and dispersal of any residual treatment chemicals and encapsulated water following discharge. Any residual FAC and organic matter, reduced concentrations of DO, or altered pH will not be persistent in the receiving environment.

The only persistent agent present in the water discharged after encapsulation will be cyanuric acid, derived from dichlor. However, given the low bioaccumulation potential and low toxicity of this chemical (see Section 3.3), any accumulation of cyanuric acid in the environment around the treatment location is not expected to pose a significant environmental risk.

Based on these considerations, it does not seem necessary to impose restrictions on the frequency of treatment at a given location above that imposed by the time required to process a boat.

## 4. DESCRIPTION OF TREATMENT PRIOR TO DISCHARGE

Section 3 of the report discussed properties of the water discharged after encapsulation of a fouled vessel that may have adverse effects on the receiving environment. Section 4 describes ways in which these potential effects, although expected to be small (see section 3), may be further avoided, remedied or mitigated.

#### 4.1. Residual chlorine

Based on the trial with the floating dock in Westhaven Marina (Auckland), residual concentrations of chlorine after overnight encapsulation (without re-dosing) may be in the order of 1–10 mg/L. This is substantially higher than guidelines values for the protection of aquatic life. For example, the ANZECC (2000) chronic trigger value is 3  $\mu$ g/L, and the US EPA (2014) aquatic life acute value 13  $\mu$ g/L (note that these refer to total residual chlorine, of which FAC is a component). The World Health Organisation's guideline for FAC in drinking water is 5 mg/L<sup>5</sup>.

There are three options for reducing the residual chlorine concentration prior to discharge of the encapsulated water: (i) containing the water for longer to allow natural degradation of FAC; (ii) neutralisation of FAC using a chemical agent; and (iii) dilution by mixing with ambient water.

#### 4.1.1. Degradation of free available chlorine

Chlorine in solution is consumed by reaction with organic matter, is volatilised and is also degraded by UV light (though this will be reduced in the present use because of the presence of stabilising cyanuric acid in dichlor).

The simplest method to reduce residual chlorine concentrations is to extend the period of the treatment until measured concentrations reach guideline values. However, this is not likely to be satisfactory in most situations because it involves delay to the boat being treated and makes the encapsulation equipment unavailable for treating other boats. Prolonged encapsulation may also result in reduced DO and increased sulphide concentrations. As a compromise, retaining the encapsulated water for 4 h after the last re-dosing would allow FAC concentration to degrade to ca 50 mg/L (see Section 3.2), reducing the amount of thiosulphate needed to neutralise it.

#### 4.1.2. Neutralisation of free available chlorine

A faster alternative to natural degradation of residual FAC is to add a neutralising agent, such as:

\_

<sup>&</sup>lt;sup>5</sup> See http://www.who.int/water\_sanitation\_health/dwq/chlorine.pdf

- sodium thiosulphate (Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>)
- sodium sulphite (Na<sub>2</sub>SO<sub>3</sub>)
- sodium bisulphite (NaHSO<sub>3</sub>)
- sodium metabisulphite (Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub>)
- calcium thiosulphate (CaS<sub>2</sub>O<sub>3</sub>)
- ascorbic acid (vitamin C) or sodium ascorbate (vitamin C).

Most of these chemicals have an acute toxicity class listed on their MSDS and therefore carry an environmental risk. The exceptions are sodium thiosulphate and ascorbic acid/sodium ascorbate.

Sodium thiosulphate is recommended as a neutralising agent because it is not classified as a hazardous substance and is of relatively low toxicity (96 h  $LC_{50}$  24,000 mg/L for mosquito fish compared with 660 mg/L for sodium sulphite). It also scavenges less oxygen than the other sodium compounds listed above. The MSDS for sodium thiosulphate is shown in Appendix 3.

Sodium thiosulphate is available in bulk from sellers of swimming pool supplies and is likely to be cheaper than sodium ascorbate. The use of sodium thiosulphate is suggested for the dechlorination of swimming-pool water before discharge to the stormwater system (*e.g.* Western Bay of Plenty District Council, undated).

In addition to scavenging DO, sodium thiosulphate forms hydrochloric acid as a result of the neutralisation reaction (as do the other chemicals listed above, other than ascorbic acid / sodium ascorbate). Therefore the minimum amount of thiosulphate required to neutralise residual FAC should be used. This can be estimated based on residual FAC concentration and the volume of encapsulated water and provided as look-up tables for ease of use on site (see Appendix 4 Table 3).

Mitigation of reduced DO and pH is discussed below.

#### 4.1.3. Dilution

Following addition of sodium thiosulphate, any chlorine that might still remain in the encapsulated water (due to incomplete mixing or underestimate of the concentration of residual chlorine or of the volume of water) will be rapidly diluted by the surrounding water. Other chemical differences between the encapsulated water and the surrounding water body will also be mitigated by dilution. These may include residual cyanuric acid (from the dichlor), altered pH and DO (see section 4.2).

Dilution may be enhanced by pumping water out of the encapsulation before the dock is opened or wrapping removed, giving the encapsulated water more opportunity to mix with the surrounding water body.

#### 4.1.4. Recommended treatment of residual chlorine

Tasman District Council's Resource Management Plan allows discharge of water into coastal waters if the concentration of FAC is less than 0.5 mg/L (see Section 6.3.2). Northland Regional Council holds a resource consent (036500.01.01) to discharge contaminants associated with the control and eradication of invasive marine pests using a floating pontoon or benthic mats and the application of chlorine as a biocide. Condition 9 of this consent requires that any discharge from the pontoon or at the outer edge of the mat shall have a total residual chlorine concentration not greater than 0.2 mg/L.

Guidance to NRC for their consent application (Stewart 2014) proposed that total residual chlorine concentrations should be reduced to as low as reliably measurable, and no more than 100 ppb (equivalent to 0.1 mg/L), prior to discharge to the surrounding water body. This maximum concentration does not take into account "reasonable mixing". This is presumably why NRC chose the value of 0.2 mg/L for their consent condition.

Guidelines for the disposal of swimming-pool water (Western Bay of Plenty District Council, undated) suggest that, if disposal to sewer or by soakage is not feasible, water may be discharged to the stormwater system if the FAC concentration is less than 0.5 mg/L. For comparison, the recommended concentration of FAC to protect the health of users of swimming pools is 1–3 mg/L (Centers for Disease Control and Prevention, 2013).

In the present context, we recommend that the concentration of residual chlorine should be measured prior to the discharge of encapsulated water. For consistency with the relevant rule in the Tasman District Resource Management Plan, if the concentration of residual chlorine exceeds 0.5 mg/L it should be reduced before the encapsulated water is released. This may be done by extending the treatment period to allow natural degradation of chlorine by reaction with organic matter and volatilisation, or by chemical neutralisation. Neutralisation (i.e. reducing the concentration to < 0.5 mg/L) should be done using the minimum amount of sodium thiosulphate required to neutralise residual FAC. Appendix 4 Table 3 contains a lookup table showing the amount of sodium thiosulphate to be used to neutralise a given residual concentration of FAC in a given volume of encapsulated water.

Measurement of low concentrations of FAC (*i.e.* guideline concentrations) requires a test based on a colorimetric method, because the testing strips described in Section 2.3.4 are not sufficiently sensitive. Colorimeters for testing water in swimming pools are readily available and read FAC and TAC concentrations in the range 10  $\mu$ /L (*i.e.* around water-quality guidelines and equivalent to 0.01 mg/L or 10 ppb) to 5 mg/L. They can also measure cyanuric acid concentrations in the range 2–200 mg/L.

# 4.2. Dissolved oxygen

Reduction in DO by respiration is expected to be negligible. However, DO may be scavenged if sodium thiosulphate is added in amounts in excess of those required to neutralise residual FAC. Reduction in DO can be minimised by matching the amount of sodium thiosulphate added to the amount of FAC to be neutralised. This would be based on the measured concentration of FAC and the estimated volume of encapsulated water.

In most cases, DO concentration is expected to be > 80% and dilution by the surrounding water body is likely to be sufficient mitigation. The likelihood of adverse environmental effects will be further reduced by the suggested restriction that treatment should be done away from sensitive habitats (see Section 5).

If the measured concentration of DO in the encapsulated water is less than 80% of saturation (or 6 mg/L), this may be mitigated prior to release by stirring or by pumping the water out and allowing it to fall through air back into the surrounding water. Discharge during the flowing tide will also enhance dilution and dispersal.

# 4.3. Organic matter

Organic matter derived from biofouling may cause reduction in DO in the water body around the treatment area or on the seabed beneath. Release of large amounts of organic material should therefore be avoided if feasible, although this is unlikely to necessary after encapsulation treatments.

When the hull is encapsulated using plastic strips or sheets that are not intended for reuse, the wrapping and organic waste should be removed together and sent for disposal to land or recycling. Where a floating dock or reusable sheet is used, if feasible any conspicuous amounts organic waste should be collected as the wrapping is removed from the hull and disposed of to land. This can be done, for example, by divers using hand-nets. During the wrapping of the Voyager P (without biocide), organic debris was contained within the wrap and removed by the divers (pers. comm. Lauren Fletcher, Cawthron Institute).

Small amounts of residual organic waste should be dealt with by releasing the water from the dock during periods of (tidal) current flow, to maximise dispersion.

# 4.4. pH

Dilution and buffering by the surrounding water body is expected to provide sufficient mitigation for any differences in pH. This can be optimised by releasing encapsulated water during periods of (tidal) current flow and / or by pumping out of the dock to maximise dispersion.

#### 5. DESCRIPTION OF THE RECEIVING ENVIRONMENT

This section of the report describes the receiving environment for water and contaminants discharged after encapsulation. Locations where encapsulation is carried out should be selected so that any adverse effects of the discharge are minimised.

Selection criteria for locations for treating fouled boats divide into those that facilitate rapid and efficient treatment (and thereby minimise biosecurity risk) and those that minimise potential adverse effects on the receiving environment from the discharge of treatment water.

# 5.1. Selection of treatment locations for rapid and efficient treatment

From the point of view of facilitating rapid treatment, criteria for selection of locations for treating biofouling on high-risk vessels include the following.

- Proximity to places of arrival of boats, particularly ports and marinas (including customs berths) to minimise the need to move infected boats after arrival. Such areas also have relatively modified habitats and biological communities, which mitigates the significance of any effects of treatment on the surrounding environment.
- For practical reasons, encapsulation is most easily done alongside a wharf or marina berth, where there is easy access, supporting infrastructure and usually some shelter from wind or water movement. Deployment of floating docks, in particular, is likely to be done from a berth.
- Avoiding locations where the surroundings create a physical risk to the integrity of the wrapping. This includes locations where:
  - excessive water movement will make the wrapping process difficult and may cause damage and tearing of the wrap
  - adjacent structures or the seabed could abrade or tear the wrapping,
     e.g. wharf piles or sheeting with protruding bolts or large numbers of oysters, over shallow, rough-textured seabed, or near riprap rock walls.

# 5.2. Selection of treatment locations for minimising environmental effects

Criteria that minimise potential adverse environmental effects relate to rapid mixing of discharged water with the surrounding water body to enhance dilution and dispersal. They include the following.

- Choosing a site with good water movement to maximise dilution of any residual chlorine or water with low dissolved oxygen concentration or altered pH
- Avoiding sensitive receiving environments, such as marine reserves, shellfishgathering areas, marine farms and bathing areas
- In accordance with the NCC Resource Management Plan, the treatment location should be sited so that the mixing zone for water released from encapsulation is kept away from intertidal areas.

# 5.3. Mixing zones

Water quality standards and discharge consents usually allow a 'zone of reasonable mixing' around the point of discharge, within which the water-quality standards are not expected to be met. Within this zone there is also a 'zone of initial dilution' around the point of discharge, where relatively rapid dilution occurs.

It is not appropriate to specify a zone of reasonable mixing that would cover all potential locations for encapsulation treatments in terms of a maximum distance from the point of discharge beyond which a water-quality standard should be achieved. The appropriate size will depend on the volume of water discharged, and the patterns and strength of water movement at the time of discharge. The extent of mixing zones must also take into account any sensitive receiving environments located downstream.

The general requirements for mixing zones are that:

- the size of the zone should be minimised
- any adverse effects should be confined to the zone
- any adverse effects within the zone should be no more than minor.

Rather than specifying a maximum size of mixing zones for discharges from encapsulation, we recommend that encapsulation should be done at locations that are well-flushed by tidal or other currents. Discharge of encapsulated water should be done during the flowing tide. These factors will enhance the rate of mixing. The treatment locations suggested in Section 5.4.1 are all in heavily modified port and marina environments, with one of the selection criteria being a low likelihood of sensitive habitats occurring within the mixing zone.

# 5.4. Summary

Application of these criteria suggests that ports and marinas are the most suitable places to carry out treatment. They provide facilities likely to be needed for the work (including electrical supply, access to medical facilities if required, easy access to the boat from land or water and limited access for the general public), and are often

relatively sheltered from the wind. Well flushed locations should be chosen. Ports and marinas are usually highly modified environments, dominated by artificial habitats with little or no particular ecological value.

However, boats may also need to be treated by encapsulation on swing moorings in more open water. This should not be done if there are sensitive receiving environments downstream of the treatment location unless suitable mitigation is possible (see Section 4.1.4). Such locations should also be avoided if water movement may cause damage to the wrap.

#### 5.4.1. Suggested treatment locations in the Top of the South

#### Port Nelson and Nelson Marina

- East end of Kingsford Quay. Highly modified, artificial environment, reasonably well flushed, adequate depth, used for engineering work, restricted public access.
- Offshore ends of slipway jetty and dog-leg jetty in Slipway Basin. Highly modified, artificial environment, adequate depth, used for engineering work, restricted public access but limited flushing.
- Lay-up berths. Highly modified, artificial environment, well flushed, adequate depth, used for engineering work **but** public access.
- Fishing boat wharves on west side of Dixon Basin. Highly modified, artificial
  environment, reasonably well flushed **but** restricted depth, potential snags for
  wrapping material, public access and boat traffic.
- MPI wharf, Dixon Basin. Highly modified, artificial environment, reasonably well flushed, adequate depth, used for quarantining boats, restricted public access but boat traffic.
- Visitors' berth on offshore end of jetty in outer marina. Highly modified, artificial
  environment, reasonably well flushed, adequate depth **but** public access and boat
  traffic.

#### **Port Tarakohe**

1. Offshore marina berths and adjacent wharf. Highly modified, artificial environment, reasonably well flushed, adequate depth **but** public access.

#### Havelock

1. Offshore marina berths and adjacent wharf. Highly modified, artificial environment, reasonably well flushed, adequate depth **but** public access, boat traffic and limited flushing in inner basin.

#### Waikawa Marina

 Outer berths on jetties 8W–12W (northern basin). Highly modified, artificial environment, well flushed, adequate depth but public access and boat traffic.

## Picton Port, Waimahara Wharf and Picton Marina

- Outer berths on marina jetties 4–7 and 12 (inner marina). Highly modified, artificial environment, reasonably flushed, adequate depth **but** public access and boat traffic.
- 2. Marina jetties 1–3 (outer marina). Largely modified, artificial environment, well flushed, adequate depth **but** public access and boat traffic.
- 3. Town wharves. Largely modified, artificial environment, well flushed, adequate depth **but** public access, proximity to bathing beach and boat traffic.
- 4. Waimahara Wharf (when not in use by log ships). Highly modified, artificial environment, reasonably well flushed, adequate depth, restricted public access.

# 6. ASSESSMENT OF POTENTIAL EFFECTS ON THE ENVIRONMENT

This section assesses potential effects on the receiving environment, taking into account any treatment of the discharge and selection of appropriate locations to carry out encapsulations.

## 6.1. Effects during treatment

## 6.1.1. Spillage

Dichlor is considered a 'hazardous substance' under the Hazardous Substances and New Organisms Act 1996. It should be handled and stored according to the procedures in the MSDS.

The risk of spillage during mixing and addition of chlorine solution should be minimised by mixing the dichlor into seawater on site before pouring or pumping into the encapsulated water, and by due care and attention during the application process. Spillages on land of dichlor pellets, chlorine solution or sodium thiosulphate powder should be contained and cleaned up immediately.

Spillages of chlorine solution into water cannot realistically be contained and cleaned up but natural degradation, dispersal and dilution will reduce the concentration of chlorine. If a pump is available, pumping water from the spill site and releasing it downstream so that the stream of water falls through the air back into the sea will help to disperse and volatilise dissolved chlorine. Remediation of any spillages of dichlor granules or sodium thiosulphate powder must rely on natural dissolution, dispersal and decay.

## 6.1.2. Leakage

Leakage of encapsulated water and dissolved chlorine may occur from wrapping, a floating dock or a blanking plate as a result of an imperfect seal against the hull or between wrapping strips, or because of tearing of the wrapping.

To avoid tearing, the wrap should be of a sufficiently robust material to withstand physical stresses at the treatment location during deployment and treatment. When sharp biofouling and/or hull features are likely to be present, netting curtains (*e.g.*, fish-farm smolt netting: Aquenal 2009) can be hung between the hull and the wrapping to shield the wrapping from tearing and abrasion. The wrapping, floating dock or blanking plate must be of a design and capacity suitable to minimise leakage.

Monitoring and detection of minor leaks is likely to be difficult or impossible, although dyes (*e.g.*, rhodamine) could be added to the encapsulated water to assist detection.

If appropriately designed wrapping is used and treatment is done in an appropriate location to avoid features that might damage the wrap, the risk of more than minor leakage will be small. Small amounts of leakage will be mitigated by dilution and this would be expected to reduce environmental concentrations of chlorine or reduced DO to insignificant levels within a short distance from the source.

## 6.2. Effects after treatment

If the mitigation treatments described in section 4.1.4 are applied to the encapsulated water before it is released into the surrounding water body, effects on the environment are expected to be negligible. Any residual treatment chemicals or reduced concentration of DO in the water will be rapidly diluted by mixing with the surrounding water body, particularly if release is timed to coincide with periods of peak water movement. Assuming a concentration of 0.5 mg FAC/L in the discharged water, dilution by a factor of roughly 40 would achieve the US EPA water quality of 13  $\mu$ g/L.

The fact that chlorine, sodium thiosulphate and any organic matter derived from the biofouling are not persistent contaminants further reduces the likelihood of long-term adverse environmental effects.

Cyanuric acid is the only persistent contaminant likely to be present in the encapsulated water. It is classed as "essentially non-toxic" (Huthmacher and Most 2005). As described in section 3.3, available data suggest that it is unlikely to have any significant adverse environmental effect:

- The bioconcentration factor to fish is low (< 0.5 in carp after 6 weeks).
- The NOEC for reproduction and 48-EC<sub>50</sub> for immobilisation of *Daphnia magna* are 32 mg/L and 1,000 mg/L, respectively.
- Both the 96-h LC<sub>50</sub> and the 14-day LC<sub>50</sub> for the fish Oryzias latipes are
   100 mg/L.
- The 72-h NOEC and 72-h EC<sub>50</sub> for the alga Selenastrum capricornutum are 62.5 mg/L and 620 mg/L, respectively.

Rates of release of copper from antifouling should not be affected by the treatment because there is no physical action on the hull surface that might abrade the antifouling coating. Where heavy biofouling is present, the copper in the antifouling coating is likely to be depleted and its release even less likely. No significant release of antifouling biocides is, therefore, expected to occur as a result of treatment by encapsulation with chlorine.

## 6.3. Compliance with coastal marine water-quality standards

## 6.3.1. Nelson City Council

Nelson City Council's Resource Management Plan, Coastal Policy CM6.3 (Discharges (general)) states that:

"Discharges to coastal water should not, after reasonable mixing, result in a breach of classification standards or a reduction in water quality and the discharge should not (either by itself or in combination with other discharges) give rise to any significant adverse effects on habitats, feeding grounds or ecosystems."

The water-quality class FEA (fisheries, fish spawning, aquatic ecosystems and aesthetic purposes) applies throughout the Coastal Marine Area. The coastal marine water-quality standards for the FEA class, to apply after reasonable mixing, are listed below.

- 1. The natural temperature of the water shall:
  - a. not be changed by more than 2 °C, and
  - b. not exceed 25 °C.
- 2. The concentration of dissolved oxygen shall exceed the higher of 6 mg/l or 80% saturation.
- 3. There shall be no significant adverse effects on aquatic life arising from the discharge of a contaminant into water, a pH change, the deposition of matter on the foreshore or seabed, or any other cause.
- 4. There shall be no:
  - a. production of any conspicuous oil or grease films, scums or foams or floatable or suspended material, and
  - b. conspicuous change in the colour or visual clarity, and
  - c. emission of objectionable odour in the receiving water.

If the recommendations for treatment of encapsulated water prior to discharge (Section 4) and siting of encapsulation work (Section 5.4.1) are followed, these standards are unlikely to be breached. There is no reason to expect that encapsulation would give rise to oil or grease films, scums, foams or floatable or suspended material, nor to any change in colour or clarity beyond the immediate area of the treatment. Proper disposal of waste material (any biofouling dislodged from the hull, and plastic wrapping not intended for reuse) will avoid the possibility of objectionable odours.

## 6.3.2. Tasman District Council

Rule 36.2.2.8 (Discharge of Water) of the Tasman Resource Management Plan states that:

The discharge of water into water is a permitted activity that may be undertaken without a resource consent, if it complies with the following conditions:

- a. The discharge does not cause erosion of the bed of any river or stream.
- b. The discharge does not contain more than 0.5 grams per cubic metre of free or residual chlorine.
- c. Except as provided for in condition (aa), the discharge does not contain contaminants other than heat.
- d. When the natural temperature of the water is less than 20 degrees Celsius, the water temperature is not increased by more than 3 degrees Celsius and in any event does not exceed 20 degrees Celsius. When the natural temperature of the water is 20 degrees Celsius or greater, there is no increase in water temperature.
- e. Except as provided for by conditions (g) and (h), the rate of discharge does not exceed 5 litres per second.
  (Note that conditions (g) and (h) relate to discharges from dams and hydro-electric power generation).

If the discharge does not comply with these conditions, a coastal permit is required. However, if the recommendations for treatment of encapsulated water prior to discharge (Section 4) and siting of encapsulation work (section 5.4.1) are followed, these conditions are expected to be met.

The proposed treatment of the encapsulated water prior to discharge (section 4.1) will reduce the (measured) concentration of FAC to less than 0.5 g/m³ (equivalent to 0.5 mg/L).

Pumping water out of the encapsulation using a pump of 330 l/min (a standard size of portable water pump, equivalent to 5.5 L/min) would slightly exceed the maximum rate of discharge.

## 6.4. Residual biosecurity risk

This section of the report addresses the fact that a residual biosecurity risk may remain after a fouled vessel has been treated by encapsulation. Although not directly relevant to an assessment of the environmental effects off encapsulation treatments, it

does inform the recommendations for consent conditions presented in section 7. It is also important that the viability of fouling is checked before the wrapping is removed to avoid having to re-wrap and treat the hull if the initial treatment was not successful.

The assumption that encapsulation with the addition of chlorine solution has been effective in killing biofouling may not be justified for a number of reasons. The target strength of FAC may not have been achieved, duration of exposure may have been less than the 4 h recommended, water may not have been adequately mixed, or species that are unusually resistant to chlorine may have been present on the hull.

The hull should be inspected by suitably qualified person (*i.e.* with experience in assessing the viability of a range of motile and sedentary organisms) after cleaning. The type of inspection required will depend partly on the types of fouling organisms that the treatment was targeting. For larger organisms, such as the fanworm *Sabella spallanzanii*, assessment of viability could be done by in-water visual inspection by divers, or from the surface using a video camera on a pole or remote operated vehicle. For other taxa, it will be necessary to collect samples to confirm that they are not viable. This may be done by divers, either after the wrap has been removed or by cutting holes in the wrap to remove a sample from the hull (and resealing the hole if further treatment is required). Alternatively, test plates on which fouling has been allowed to develop can be suspended inside the wrapping and withdrawn at the end of treatment to check whether fouling has been killed. This last approach assumes that the fouling on the plates is representative of that on the hull, which may not be the case when, for example, the plates have locally-derived fouling and the vessel has come from another port.

## 7. RECOMMENDATIONS FOR CONSENT CONDITIONS

This section contains recommendations for consideration in setting consent conditions. It is expected that they will be refined by NCC and TDC in accordance with their requirements.

- Written notification of intention to carry out treatment shall be given to council. The
  notice period, and the person to report to, should be appropriate to the needs of
  council consents and biosecurity staff in the case of planned treatment. In the
  case of unplanned treatment (for example, the unannounced arrival of a fouled
  vessel), notification should be provided as soon as practical.
- Notification should include:
  - a description of the equipment (wrapping, pontoon or blanking plate see Section 2.2) so its adequacy for the conditions can be assessed. For equipment or methods used repeatedly, these descriptions can be lodged with, and assessed by, the council in advance of their being used
  - information on the experience and expertise of the contractor performing the treatment. This information can be lodged with, and assessed by, the council in advance
  - a statement that dichlor granules and solution will be handled in accordance with the MSDS and with any applicable regulations prepared under the Hazardous Substances and New Organisms Act 1996.
     Notification shall include a contingency plan for dealing with any spillage of dichlor granules or solution on land.
- Only chlorine should be used as a biocide, added in the form of sodium dichloroisosyanurate (dichlor) granules pre-dissolved in seawater and applied to give an initial concentration of free available chlorine (FAC) of 200 mg/L. The target concentration should be maintained for at least 4 h. This will require periodic measurement of FAC concentration and addition of more dichlor solution as required.
- Any discharge of contaminated water from the encapsulation shall meet the following criteria:
  - the total residual chlorine concentration shall not exceed 0.5 mg/L. If the residual concentration exceeds this standard, excess FAC should be neutralised using the minimum required amount of sodium thiosulphate. Alternatively, the encapsulation may be left in place until the FAC concentration reduces to 0.5 mg/L.
  - the dissolved oxygen concentration should not be less than 80% of saturation after reasonable mixing. This standard is likely to be met by mixing with surrounding water soon after release into a flowing tide. Reoxygenation may be enhanced by aerating the encapsulated water prior to

discharged or discharging by pumping and allowing water to fall through air into the surrounding water.

- All wrapping material and, to the extent practical, any conspicuous amounts of organic matter, including dead or dying organisms, dislodged from the hull during treatment must be collected and removed from the treatment site and disposed of to land or reused.
- The viability of fouling should be checked after treatment to ensure that treatment was effective.
- Treatment facilities should preferentially be located in ports or marinas, preferably close to points of arrival of boats where this does not interfere with port or marina operations. They should be located away from sensitive receiving environments. The locations listed in Section 5.4.1 may be included as suggestions.
- Other locations, such as swing moorings, may be used unless there are sensitive receiving environments downstream and suitable mitigation is not possible. These should be assessed on a case-by-case basis.
- Facilities should be in well-flushed locations but avoid places or times when water movement may be sufficiently strong to damage the wrapping.
- Location of facilities should also avoid natural or man-made features likely to damage the wrapping material. Best practice should be used in deploying the wrapping material to minimise the risk of damage.
- Encapsulated water should be discharged during a flowing tide to maximise mixing.
- For each discharge event, the following information shall be recorded and the information provided to NCC.
  - The weight of dichlor added and the weight of any sodium thiosulphate used to neutralise residual FAC.
  - The concentration of FAC and DO at the start of treatment, at the end of treatment before neutralisation of residual FAC (if required), and prior to discharge of water from the encapsulation.
  - The estimated volume of encapsulated water that is discharged.
  - The DO concentration of the ambient water at the time of discharge for comparison with the encapsulated water.
  - The date, time and location of the treatment.
  - The results of inspections of the hull during cleaning to determine whether biofouling has been killed.
- A review condition should be included to enable changes to the conditions as a result of information obtained from monitoring of previous treatments.

## 8. WORKED EXAMPLE OF THE TREATMENT OF A VESSEL

## 8.1. Description of the proposed activity

The worked example describes a hypothetical treatment of the hull of a trawler (similar in size to the *Voyager P*: see section 1.2) by encapsulation with the addition of chlorine (in the form of dichlor) at a concentration of 200 mg/L. Encapsulation is by enclosing the hull in a single plastic sheet, with the edges of the sheet secured above the water line on all sides. The work is done on Kingsford Quay.

### 8.1.1. Vessel dimensions

The hull of the trawler is 28.5 m long at the water line, based on the length between perpendiculars (LBP), beam 8.3 m and draft 2.67 m.

Using the formula for estimating the total wetted surface area (TWSA) of the hull of a trawler (see Appendix 1):

```
TWSA = (2 \times \text{Length} \times \text{Draft}) + (\text{Beam} \times \text{Draft})
TWSA = (2 \times 28.5 \times 2.67) + (8.3 \times 2.67)
TWSA = 174.4 \text{ m}^2.
```

### 8.1.2. Amount of dichlor added

Given that the estimated TWSA of the hull is 174.4 m<sup>2</sup>, and assuming a gap between the hull and the wrapping of 5 cm:

- the volume of encapsulated water will be approximately 9 m<sup>3</sup>
- the weight of dichlor required to provide a concentration of 200 mg FAC/L is 3.27 kg (see Table 2 of Appendix 4) and is dissolved in 30 L of seawater before adding to the encapsulated water (distributed around the hull and mixed as much as possible)
- During treatment it is important to ensure that the chlorine reaches all parts of the hull, which may require active mixing and stirring
- Assuming that the concentration of FAC has decreased to ca 100 mg/L after 2 h, a further 1.64 kg (i.e., 50% of the original dose) of dichlor must be added to reinstate the target concentration.

## 8.1.3. Duration of treatment

Following the recommendation in section 2.3.4, the hull will be exposed to the target concentration of FAC (200 mg/L) for 4 hours. However, we assume that due to degradation of FAC, the encapsulated water will need to be re-dosed after 2 hours, depending on measured concentration of FAC. The wrapping will then be left in place for a further 4 hours after the last addition of dichlor for the concentration of FAC to decrease by degradation to ca 50 mg/L.

Consequently, treatment may take 7–8 hours. In practice it may be more convenient to leave the wrapping in place overnight following the last addition of dichlor.

## 8.1.4. Assessment of viability of fouling after treatment

The viability of the target organisms will be assessed at the end of treatment (see section 6.4) but before the wrapping is removed, to determine whether further treatment is required.

## 8.2. Description of the receiving environment

Kingsford Quay consists of a concrete deck on wooden piles and is approximately 250 m long (Inglis *et al.* 2005). According to the navigational chart, the water depth in front of the western end of the wharf is dredged to 9.5 m, rising to 6.5 m in front of the eastern third of the wharf's length (Figure 2). Kingsford Quay is bounded to the west by McGlashen and Brunt Quays and to the east by the Slipway Basin. McKellar Quay faces Kingsford Quay across the Basin.

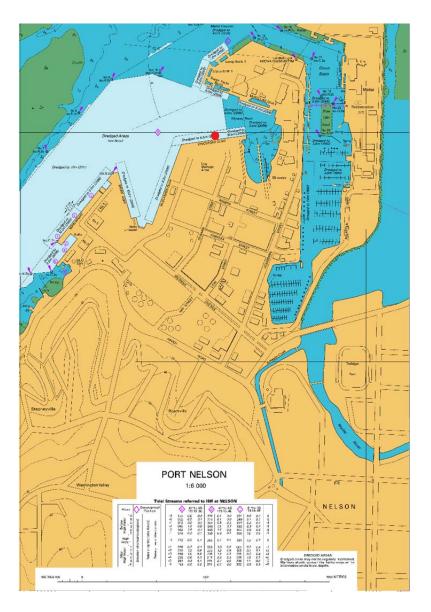



Figure 2. Navigational chart of Port Nelson, showing Kingsford Quay and adjacent areas. The location of the hypothetical treatment is shown by a red dot. Source: Land Information New Zealand (LINZ) and licensed by LINZ for re-use under the Creative Commons Attribution 3.0 New Zealand licence.

The environment in and around Kingsford Quay is, therefore, highly modified and, apart from the seabed, consists largely of artificial structures. The area of seabed around these wharves and out to ca 225 m to the north are periodically dredged for navigational purposes. Further north still, the outflow channel of the Maitai River is dredged to 4.5 m. To the west, beyond the dredged area of the swing basin and ca 450 m from Kingsford Quay, lies an intertidal bank of shell and sand.

The navigational area of the harbour is well flushed by tidal currents. The navigational chart states that flood-tide and ebb-tide velocities along the face of the Main Wharf

(west of Kingsford Quay) are 1.7 kn (82 cm/s) and 1.2 kn (58 cm/s), respectively. The flood-tide current velocity around Kingsford Quay is 30–45 cm/s (APASA 2006).

## 8.3. Nature of the discharge

### 8.3.1. Volume of discharge

Given that the estimated TWSA of the hull is 174.4 m<sup>2</sup>, and assuming a gap between the hull and the wrapping of 5 cm, the volume of encapsulated water to be discharged will be approximately 9 m<sup>3</sup>.

### 8.3.2. Residual chlorine

Assuming that the wrapping is left on the hull for at least 4 h after the last addition of dichlor, the residual FAC concentration will be ca 50 mg/L (see section 3.2).

## 8.3.3. Residual cyanuric acid

Cyanuric acid will be present in the encapsulated water, its concentration dependent on the amount of dichlor added:

- Total amount of dichlor added is 3.27 + 1.64 = 4.91 kg (see section 8.1.2)
- Cyanuric acid represents 45% by weight
- Amount of cyanuric acid added is 2.21 kg
- Volume of water is 9,000 L
- Concentration of cyanuric acid at the end of treatment is 246 mg/L.

## 8.3.4. Dissolved oxygen, organic matter, dissolved sulphides and pH

These variables are not expected to change significantly during the period of encapsulation (see sections 3.4–3.7), however:

- There may be a small decrease in DO because the hull is heavily fouled and the respiratory demand of the fouling organisms correspondingly high
- Dissolved oxygen will be measured prior to discharge of the encapsulated water and compared with the ambient concentration
- Organic material dislodged from the hull during treatment may be present in suspension or settled on the floor of the wrapping. This is likely to include dead or dying fouling organisms
- The concentration of dissolved sulphides is not expected to increase during the relatively short duration of treatment
- pH may be reduced slightly by the addition of dichlor, which is of lower pH than seawater (see section 3.7) but this effect will be small because of the amount of dichlor added relative to the volume of encapsulated water.

## 8.4. Treatment prior to discharge

### 8.4.1. Neutralisation of residual chlorine

Residual FAC will be measured and neutralised (*i.e.*, reduced to < 0.5mg/L) prior to discharge:

- A residual FAC concentration of 50 mg/L, for example, will require 837 g of sodium thiosulphate to neutralise (see Appendix 4 Table 3).
- This will reduce the concentration of FAC to below the environmental guideline of 0.5 mg/L proposed in section 4.1.4.

The FAC concentration will be confirmed by measurement after neutralisation. Residual FAC in the discharged water will also be subject to dilution and degradation by mixing (see section 4.1).

## 8.4.2. Organic matter

Conspicuous amounts of organic matter dislodged from the hull during treatment, including organisms, will be collected during removal of the wrapping and disposed of appropriately (e.g., to landfill).

## 8.5. Assessment of effects on the environment

## 8.5.1. Spillage

Risk of spillage will be minimised by mixing the dichlor into seawater on site before pouring or pumping into the encapsulated water, and by due care and attention during the application process (see section 6.1.1). Any accidental spillages on land of dichlor pellets, chlorine solution or sodium thiosulphate powder will be contained and cleaned up immediately.

Dispersal and dilution will reduce the concentration of any spillage of chlorine solution into the water body surrounding the treatment site. Remediation of any spillages of dichlor granules or sodium thiosulphate powder will rely on natural dissolution, dispersal and decay.

## 8.5.2. Leakage

Wrapping materials must be well sealed before adding the chlorine solution and must be sufficiently robust to resist tearing and abrasion by contact with the vessel and wharf (see section 6.1.2). Small amounts of leakage will be mitigated by dilution and

this would be expected to reduce environmental concentrations of FAC or reduced DO to insignificant levels within a short distance from the source.

## 8.5.3. Dilution of discharged contaminants by mixing

Residual contaminants in the encapsulated water are expected to be diluted rapidly by mixing into the ambient water body:

- If, at the end of treatment, the bow and stern parts of the wrapping are opened simultaneously during a flowing tide (with a velocity of, say, 30 cm/s: see section 8.2), the tidal current will flush the encapsulated water out of the wrapping relatively rapidly.
- This 'slug' of water would have an initial cross-sectional area of ca 9 m × 3 m (*i.e.*, the beam and draft of the hull).
- Simplistically, as it is carried along and mixed with the ambient water in a tidal current of 30 cm/s, a 100-times dilution of the encapsulated water would be achieved at about 35 m downstream of the vessel<sup>6</sup> and ca 120 s after release.
- This estimate assumes that complete mixing has occurred within this time, which
  is likely to be an over-estimate of the rate of mixing. However, it does indicate that
  dilution of contaminants, and the associated replenishment of any depletion of DO
  or pH, will be reasonably rapid if removal of the wrapping occurs during the
  flowing tide, as recommended in section 7.
- The zone of reasonable mixing is likely to be of the order of tens of metres in diameter. The receiving environments that are exposed to incompletely mixed water are, therefore, the highly modified ones of the wharf area.
- Significant reduction in the concentration of DO is not expected during treatment, but mixing and aeration of the encapsulated water with ambient water is expected to restore rapidly any depletion of DO that does occur during treatment.
- Cyanuric acid and any dissolved sulphides generated during encapsulation (the latter are not expected to be significant, given the duration of treatment: see section 3.6) will be diluted rapidly. Cyanuric acid is of low toxicity (see section 3.3) and is not expected to have any adverse effect on aquatic life.
- Any uncaptured organic material will be rapidly diluted and dispersed into the receiving environment and is not expected to have any adverse effects (any biological material is expected to have been killed by the treatment).

### 8.5.4. Removal of other waste materials

All wrapping and other materials used during the treatment will be collected and removed from the treatment site for reuse or appropriate disposal.

<sup>&</sup>lt;sup>6</sup> Based on the encapsulated volume of 9 m<sup>3</sup> and a receiving volume of 9 m  $\times$  3 m  $\times$  35 m = 945 m<sup>3</sup>.

## 8.5.5. Summary of environmental effects

There is a low risk of effects on the surrounding environment during treatment from spillage and leakage. The residual concentrations of contaminants in the discharged water are expected to be negligible following treatment to neutralise FAC and, if practical, to collect organic matter dislodged from the hull. Discharge of encapsulated water will be done on a flowing tide and residual contaminants will be diluted by mixing into the receiving water body. The risk of significant, adverse environmental effects during or after treatment is, therefore, expected to be low.

## 9. ACKNOWLEDGEMENTS

Thanks to Mandy Bishop (Nelson City Council), Paul Sheldon (Nelson City Council and Tasman District Council), Rosalind Squire (Tasman District Council), Jonno Underwood (Marlborough District Council) and Lauren Fletcher, Oliver Floerl, Barrie Forrest and Grant Hopkins (Cawthron Institute) for reviewing and commenting on earlier drafts of this report. Thanks also to Bruce Lines (Diving Services NZ Ltd) for advice. This work was supported by a Ministry of Business, Innovation and Employment Envirolink medium advice grant (1573-NLCC87) and a small advice grant (1589-TSDC114).

## 10. REFERENCES

- ANZECC 2000. Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra.
- APASA 2006. Dredge disposal modelling study for Port Nelson quantitative risk assessment 2006 maintenance dredging and disposal programme. Asia Pacific Applied Science Associates report to Port Nelson Ltd, 50 p.
- Aquenal 2009. Enclosure treatment: a biosecure treatment for oil rig pontoons. MAF Biosecurity New Zealand Technical Paper No. 2009/40, Wellington, 43 p.
- Atalah J, Brook R, Cahill P, Fletcher L, Hopkins G, Forrest B (manuscript in preparation). "It's a wrap": encapsulation as a management tool for marine biofouling.
- Carver CE, Chisholm A, Mallet AL 2003. Strategies to mitigate the impact of *Ciona intestinalis* (L.) biofouling on shellfish production. Journal of Shellfish Research 22: 621–631.
- Centers for Disease Control and Prevention 2013. Healthy swimming and recreational water. United States Government Centers for Disease Control and Prevention, available at: http://www.cdc.gov/healthywater/swimming/pools/disinfection-team-chlorine-ph.html, accessed 17 May 2015.
- Clearwater SJ, Hickey CW, Martin ML 2008. Overview of potential piscicides and molluscicides for controlling pest aquatic species in New Zealand. New Zealand Department of Conservation Science for Conservation Report No. 283, Wellington, 76 p.
- Coutts A, Forrest B 2005. Evaluation of eradication tools for the clubbed tunicate Styela clava. Cawthron Institute Report No. 1110, Nelson, New Zealand, 54 p.
- Coutts A, Forrest B 2007. Development and application of tools for incursion response: lessons learned from the management of the fouling pest *Didemnum vexillum*. Journal of Experimental Marine Biology and Ecology 342: 152–164.
- Dunmore R, Piola R, Hopkins G 2011. Assessment of the effects of household cleaners for the treatment of marine pests. Biosecurity New Zealand Technical Paper No. 2011/11, Wellington, 50 p.
- Floerl O, Fletcher L, Hopkins, G 2015. Tools and infrastructure for managing biosecurity risks from boat pathways in the Top of the South region: Final Draft. Cawthron Report No. 2683 prepared for Nelson City Council and the Top of the South Biosecurity Partnership via Envirolink Medium Advice Grant 1526-NLCC84, 92 p. plus appendices.
- Floerl O, Smith M, Inglis G, Davey N, Seaward K, Johnston O, Fitridge I, Rush N, Middleton C, Coutts A 2008. Boat biofouling as a vector for the introduction of

- non-indigenous marine species to New Zealand: Recreational boats. MAF Biosecurity New Zealand Technical Paper, Wellington, 71 p.
- Forrest BM, Hopkins GA, Dodgshun TJ, Gardner JPA 2007. Efficacy of acetic acid treatments in the management of marine biofouling. Aquaculture 262: 319-332.
- Forrest BM, Blakemore KA 2006. Evaluation of treatments to reduce the spread of a marine plant pest with aquaculture transfers. Aquaculture 257: 333–345.
- Huthmacher K, Most D 2005. Cyanuric Acid and Cyanuric Chloride. In, *Ullmann's Encyclopedia of Industrial Chemistry* 2005, Wiley-VCH, Weinheim. doi 10.1002/14356007.a08 191.
- Inglis G, Floerl O, Ahyong S, Cox S, Unwin M, Ponder-Sutton A, Seaward K, Kospartov M, Read G, Gordon D, Hosie A, Nelson W, d'Archino R, Bell A, Kluza D 2010. The biosecurity risks associated with biofouling on international vessels arriving in New Zealand: Summary of the patterns and predictors of fouling. NIWA Client Report prepared for the Ministry of Agriculture and Forestry, 165 p. + appendices.
- Inglis G, Gust N, Fitridge I, Floerl O, Hayden B, Fenwick G 2005. Port of Nelson:
  Baseline survey for non-indigenous marine species (Research Project
  ZBS2000/04). NIWA Client Report prepared for Biosecurity New Zealand Postclearance Directorate, 56 p. plus appendices.
- Morrisey D, Depree C, Hickey C, McKenzie D, Middleton I, Smith M, Stewart M, Thompson K 2015. Rapid treatment of boats fouled with the invasive polychaete *Sabella spallanzanii* using a floating dock. Biofouling, manuscript in preparation.
- Pannell A, Coutts ADM 2007. Marine pest control tools. Treatment methods used by industry to manage *Didemnum vexillum* in the top of the South Island (Project 764003). Report prepared by the Marine Farming Association for MAF Biosecurity New Zealand. 46p.
- Pinto G, Rohrig B 2003. Use of chloroisocyanuarates for disinfection of water: Application of miscellaneous general chemistry topics. Journal of Chemical Education 80: 41-44.
- Piola RF, Hopkins GA 2012. Thermal treatment as a method to control transfers of invasive biofouling species via vessel sea chests. Marine Pollution Bulletin 64: 1620-1630.
- Roche RC, Monnigton JM, Newstead RG, Sambrook K, Griffith K, Holt RHF, Jenkins SR 2014. Recreational boats as a vector for marine non-natives: developing biosecurity measures and managing risk through an in-water encapsulation system. Hydrobiologia doi: 10.1007/s10750-014-2131-y.
- Rolheiser KC, Dunham A, Switzer SE, Pearce CM, Therriault TW 2012. Assessment of chemical treatments for controlling *Didemnum vexillum*, other biofouling, and predatory sea stars in Pacific oyster aquaculture. Aquaculture 364: 53-60.

- Stewart M 2014. Resource consent application 36500.01.01 Northland Regional Council Biosecurity Mediterranean fanworm control Request for further information. NIWA Hamilton memorandum to Northland Regional Council, April 2014, 7 p. plus appendix.
- US EPA 2014. National recommended water quality criteria. Aquatic life criteria table. Available at http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm, accessed 24 April 2015.
- Western Bay of Plenty District Council, undated. Guidelines for disposing of swimming and spa pool water. Available at: http://www.westernbay.govt.nz/our-services/water-services/disposing-swimming-pool-water/Documents/Disposing%20of%20swimming%20pool%20or%20spa%20water%20-%20guidelines.pdf, accessed 17 May 2015.

## 11. APPENDICES

Appendix 1. Estimation of volume of encapsulated water.

A rough estimate of the water enclosed with an encapsulated hull can be derived from the area of the hull multiplied by the width of the gap between the hull and the encapsulating material. The antifouling coating industry uses formulae to estimate the total wetted surface area (TWSA) of a hull (Floerl *et al.* 2008). Different formulae are used for regular yachts (up to 20 m long) and superyachts (more than 20 m):

TWSA<sub>yacht</sub> =  $2 \times \text{Length} \times \text{Draft}$ TWSA<sub>supervacht</sub> =  $(2 \times \text{Length} \times \text{Draft}) + (\text{Beam} \times \text{Draft})$ 

The formula for superyachts also applies to trawlers (Inglis et al. 2010).

Estimated volumes of encapsulated water for different sizes of yacht and for a motor cruiser are shown in Table 1, based on different sizes of gaps between hull and encapsulating material. The largest gap included in Table 1 is 1 m. A gap this large might be used if diver access to the hull was required, for example, for checking on the viability of biofouling after treatment. Generally, however, the gap would be kept as small as possible to minimise the volume of biocide required. Note that these values are underestimates because they do not allow for distortions to the wrapping caused by protrusions from the hull.

The estimates for an 8-m yacht range from 1.1 m³ for a tightly wrapped hull to more than 22 m³ for the same boat with a 1-m gap around it. Equivalent values for a 30-m yacht are 5.4–108 m³. For a cruiser, which has a relatively shallow draft, the estimates are much smaller than those for a yacht of the same length.

Table 1. Estimated volume of encapsulated water for different sizes and types of recreational boats and for the trawler used in the worked example. Volumes are shown for different widths of the gap between the hull and the encapsulating material. 'LWL' length at waterline, 'TWSA' total wetted surface area.

|             |            |              |             |           | Width of gap (m) |       |         |        |        |       |
|-------------|------------|--------------|-------------|-----------|------------------|-------|---------|--------|--------|-------|
|             |            |              |             | -         |                  | Encap | sulated | volume | e (m³) |       |
| Туре        | LWL<br>(m) | Draft<br>(m) | Beam<br>(m) | TWSA (m²) | 0.05             | 0.1   | 0.2     | 0.3    | 0.5    | 1.0   |
| Yacht       | 8.0        | 1.4          | 2.5         | 22.4      | 1.1              | 2.2   | 4.5     | 6.7    | 11.2   | 22.4  |
| Yacht       | 16.8       | 3.0          | 4.8         | 99.1      | 5.0              | 9.9   | 19.8    | 29.7   | 49.6   | 99.1  |
| Cruiser     | 16.0       | 1.1          | 4.9         | 35.2      | 1.8              | 3.5   | 7.0     | 10.6   | 17.6   | 35.2  |
| Super-yacht | 30.0       | 1.6          | 7.5         | 108.0     | 5.4              | 10.8  | 21.6    | 32.4   | 54.0   | 108.0 |
| Trawler     | 28.5       | 2.67         | 8.3         | 174.4     | 8.7              | 17.4  | 34.9    | 52.3   | 87.2   | 174.4 |

## Appendix 2. Material safety data sheet for dichlor.



# Paramount Pools & Spas

a division of PoolQuip Limited

### North Island:

PO Box 12840, Penrose, Auckland, New Zealand 282 Neilson Street, Onehunga, Auckland, New Zealand Phone: 0064 9 634 9097 E-Mail: <a href="mailto:info@poolquip.co.nz">info@poolquip.co.nz</a>



PO Box 8622 Riccarton, Christchurch, New Zealand 75 Blenheim Road, Riccarton, Christchurch New Zealand Phone: 0064 3 343 3441 E-Mail: <u>paramount.chc@xtra.co.nz</u>



If you have a Chemical Emergency phone 111 and ask for Fire
In case of Poisoning contact The National Poisons Centre on 0800 POISON (0800 764 766)
The most current version of this document is available online at www.poolquip.co.nz

# **MATERIAL SAFETY DATA SHEET (MSDS)**

### 1.0 Product & Company Information

Revision Date: April 2011

Product Name: Sodium Dichlorosisocyanurate Dihydrate

Other Names: Pool Master Super Chlor, Spa Master Sanitizer, Dichlor, SDIC
Uses: For the sanitization of Swimming Pool Water and Spa Pool Water

Distributor Details: As per header and any of our authorised retailers and distributors

### 2.0 Hazard Data

Hazardous according to criteria of NOHSC/ASCC.
Classified as Dangerous Goods According to NZS 5433:1999.

Risk Phrases & Safety Phrases:

R22 Harmful if swallowed

R31 Contact with acids liberates toxic gas R36/37 Irritating to eyes and respiratory system

Page 1 of 7
Sodium Hypochlorite

| R50/53 | Very toxic to aquatic organisms, may cause long-term adverse effects in the                  |
|--------|----------------------------------------------------------------------------------------------|
|        | aquatic environment                                                                          |
| S2     | Keep out of reach of children                                                                |
| S8     | Keep container dry                                                                           |
| S26    | In case of contact with eyes, rinse immediately with plenty of water and seek medical advice |
| S41    | In case of fire and/or explosion, do not breathe fumes                                       |
| S60    | This material and it's container must be disposed of as hazardous waste                      |
| S61    | Avoid release to the environment. Refer to special instructions / MSDS                       |

ERMA New Zealand Approval Code: HSR001324

HSNO Hazard Classification:

5.1.1B 6.1D 6.1E 6.3A 6.4A 9.1A 9.2A 9.3C

### 3.0 Composition

Chemical Name: CAS Number: Sodium Dichloroisocyanuric Dihydrate

51580-86-0

Percentage Rating:

100% (65% active chlorine)

### 4.0 First Aid Measures

Description of necessary measures according to routes of exposure.

Swallowed: Immediately rinse mouth with water. If swallowed, do NOT induce vomiting.

Give a glass of water. Seek medical attention immediately.

Eyes: Immediately flush eyes with water for at least 15 minutes. Do NOT interrupt

flushing. Take care not rinse contaminated water into the non-affected eye or

onto the face. Seek immediate medical attention.

Skin: If skin contact occurs, remove contaminated clothing and wash skin with

running water. If irritation occurs seek medical advice.

Inhaled: Remove victim from area of exposure – avoid becoming a casualty. Remove

contaminated clothing and loosen remaining clothing. Allow patient to assume most comfortable position and keep warm. Keep at rest until fully recovered. If patient finds breathing difficult and develops a blush discolouration of the skin (which suggests a lack of oxygen in the blood – cyanosis), ensure airways are clear of any obstruction and have a qualified person give oxygen through a face

Page 2 of 7
Sodium Hypochlorite

 $mask. \ Apply \ artificial \ respiration \ if \ patient \ is \ not \ breathing. \ Seek \ immediate$ 

medical advice.

Advice to Doctor: Treat symptomatically. Delayed effects from exposure to chlorine

(decomposition product) can include shortness of breath, severe headache,

pulmonary oedema and pneumonia.

Aggravated medical

### 5.0 Fire Fighting Measures

Extinguishing Media

Water spray (large quantities)

Hazards from Combustion Products Non combustible, but will support combustion of other materials

Special Protective Precautions and Equipment for Fire Fighters

Sodium dichloroisocyanurate is a powerful oxidising agent and decomposes violently upon liberating oxygen. In case of fire, area should be evacuated and specialist fire fighters called in. Only large quantities of water should be used as an extinguishing agent. If excess water is not available DO NOT attempt to extinguish the fire, use the available water to prevent the spread of fire to adjacent property. Attending fire fighters should keep upwind if possible and wear full protective equipment including rubber boots and self-contained breathing apparatus. A fire in the vicinity of sodium dichloroisocuanurate should be extinguished in the most practical manner but avoid contaminating this material with the fire fighting agent, including water. Decomposes on contact with water evolving toxic chlorine gas and in the presence of small amounts of water, the explosive gas nitrogen trichloride. Once fire is extinguished, wash area thoroughly with excess water. Ensure that drains are not blocked with solid material. Maintenance of excess water during clean up operation is essential. Combustible material involved in the incident should be removed to a safe open area for controlled burning or for further drenching with water prior to collection for disposal.

Hazchem Code

2WE

### 6.0 Accidental Release Measures

**Emergency Procedures** 

Clear area of all unprotected personnel. If contamination of sewers or

waterways has occurred, advise local emergency services.

Methods and Materials

Wear protective equipment to prevent skin and eye contact and

Page 3 of 7
Sodium Hypochlorite

for Containment and Clean Up breathing in vapours. Air supplied masks are recommended to avoid inhalation of toxic material. Do NOT return spilled material to original container, and do NOT mix fresh with recovered material. Do NOT add small amounts of water to sodium dichloroisocyanurate. Collect and transfer to large volume of water - do NOT use a metal container. To neutralise, as sodium sulfite (2.4Kg/Kg product). If no active chlorine remains, add soda ash (1.1Kg/Kg product) to effect complete neutralisation. Where a spill has occured in a confined space or an inadequately ventillated enclosure and the material is damp and evolving chlorine, the rate of chlorine evolution may be reduced by covering the thinly spread solid with soda ash.

### 7.0 Handling & Storage

Precautions for Safe Handling Ensure an eye bath and safety shower are available and ready for use. Observe good personal hygiene practices and recommended procedures. Wash thoroughly after handling. Avoid skin and eye contact and breathing in dust. Keep out of reach of children.

Conditions for Safe Storage (Including any compatibles) Store in a cool, dry, well-ventilated area. Keep containers tightly closed when not in use. Inspect regularly for deficiencies such as damage or leaks. Protect against physical damage. Store away from incompatible materials such as flammable, organic and combustible materials, ammonium salts, nitrogenous material, acids, water, reducing agents, strong bases, calcium hypochlorite, metals and sources of ignition. Protect from direct sunlight, moisture, food and feedstuffs. Keep dry, reactive with water, may lead to drum rupture. This product is hygroscopic. This product has a UN classification of 2465 and a Dangerous Goods Class 5.1 (Oxidizers) according to The Australian Code for the Transport of Dangerous Goods by Road and Rail.

Container Type

Use corrosion-resistant structural materials. Containers made of inert plastics are preferred.

## 8.0 Exposure Controls / Personal Protection

National Exposure Standards No value assigned to this specific material by the New Zealand Occupational Safety and Health Service (OSH). However, Exposure Standard(s) for decomposition product(s):

Chlorine: WES-TWA 0.5ppm, 1.5mg/m3, WES-STEL 1ppm, 2.9mg/m3

WES – TWA = Workplace Exposure Standard – Time Weighted Average. The eight hour, time weighted average exposure is designed to protect the worker from the effects of long-term exposure.

WES – STEL = Workplace Exposure Standard – Short Term Exposure Limits. The 15 minute average exposure standard. Applies to any 15 minute period in the working day and is designed to protect the worker

Page 4 of 7 Sodium Hypochlorite against adverse effects of irritation, chronic or irreversible tissue change, or narcosis that may increase the likelihood of accidents. The WES-STEL is not an alternative to the WES-TWN; both short-term and eight-hour, time weighted average exposures should be determined.

These Exposure Standards are guides to be used in the control of occupational health hazards. All atmospheric contamination should be kept to as low a level as is workable. These exposure standards should not be used as fine dividing lines between safe and dangerous concentrations of chemicals. They are not a measure of relative toxicity.

### **Biological Limit Values**

Engineering Controls Ensure ventilation is adequate a

Ensure ventilation is adequate and that air concentrations of decomposition product(s) is/are controlled below quoted Exposure Standards. Avoid generating and breathing in dusts. Use with local exhaust ventilation or while wearing dust mask. Keep containers closed

when not in use.

Personal Protection

RESPIRATOR: Wear an approved respirator with suitable filter for organic gases and vapours if engineering controls are inadequate (AS1715/1716). EYES: Chemical goggles to prevent splashing in the eyes (AS1336/1337). HANDS: Butyl rubber gloves break through time 4hr (AS2161). CLOTHING: Chemical-resistant coveralls and safety footwear (AS3765/2210).

## 9.0 Physical and Chemical Properties

Appearance Crustalline Powder, granules or tablets

Formula C3HCI2N303.Na Odour Chlorine Odour Vapour Pressure Not Applicable Vapour Density Not Applicable Not Applicable **Boiling Point** Melting Point 240 deg C Solubility in Water 250g/L @ 25 Deg C Specific Gravity 2.03 (Water = 1) Flash Point Not Applicable 6.5 (1% solution) Rate of Solid Materials Not Known **Decomposition Temperature** 240 Dec C

## 10.0 Stability and Reactivity

Additional Information

Chemical Stability Powerful oxidising agent. Sodium dichloroisocyanurate reacts with

water and acids evolving toxic chlorine gas and in the presence of small amounts of water, the explosive gas nitrogen trichloride. Decomposes in

Page 5 of 7
Sodium Hypochlorite

alkaline conditions evolving carbon dioxide, nitrogen and chloramines

gases.

sunlight.

Chlorine

materials, acids and water.

Hazardous

**Decomposition Products** 

Hazardous Reactions Sodium dichloroisocuanurate reacts with water and acids evolving toxic

chlorine gas and in the presence of small amounts of water the explosive gas nitrogen trichloride. Decomposes in alkaline conditions

evolving carbon dioxide, nitrogen and chloramine gases.

11.0 Toxicological Information

Toxicity Data Oral LD50 Rat: 1355-1400mg/Kg

Health Effects - Acute

Swallowed Can result in nausea, vomiting, diarrhoea and gastrointestinal irritation.

Eye Ajn eye irritant

Skin Contact with skin may result in irritation

Inhaled Material is irritant to the mucous membranes of the respiratory tract

(airways). Inhalation of high concentrations may result in shortness of breath, chest pain, severe headache and lung damage including

pulmonary oedema. Effects may be delayed.

12.0 Ecological Information

Ecotoxicity Avoid contaminating waterways

Persistence and Degradability No information available on persistence/degradability for this product

Mobility Completely soluble in water.

Environmental Fate (Exposure)

Do NOT let product reach waterways, drains and sewers.

Bioaccumlative Potential No information available on bioaccumulation for this product.

Page 6 of 7
Sodium Hypochlorite

### 13.0 Disposal Considerations

Disposal Dispose of in accordance with all local, state and federal regulations. All

empty packaging should be disposed of in accordance with Local, State and Federal Regulations or recycled/reconditioned at an approved

facility.

Special Precautions for Land Fill or Incineration Contact a specialist disposal company or the local waste regulator for advice. This should be done in accordance with 'The Hazardous Waste

Act.

### 14.0 Transport Information

Land and Sea Transport

UN Number 2465

Shipping Name Sodium Dichloroisocyanurate

Dangerous Goods Class 5.1
Packing Group II
Hazchem Code 2WE

### 15.0 Regulatory Information

Classified as hazardous according to HS (minimum degrees of hazard) regulations 2001.

**HSNO** Hazard Classification

5.1.1B 6.1D 6.1E 6.3A 6.4A 9.1A 9.2A 9.3C

ERMA Approval Code

HSR001324

## 16.0 Other Information

None

Page 7 of 7 Sodium Hypochlorite

## Appendix 3. Material safety data sheet for sodium thiosulphate.

## SIGMA-ALDRICH

sigma-aldrich.com

## **SAFETY DATA SHEET**

according to Regulation (EC) No. 1907/2006 Version 5.2 Revision Date 23.07.2014 Print Date 02.06.2015

GENERIC EU MSDS - NO COUNTRY SPECIFIC DATA - NO OEL DATA

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 Product identifiers

Product name

: Sodium thiosulfate

Product Number

: S7026 : Sigma

Brand : Sig

REACH No. : A registration number is not available for this substance as the substance

or its uses are exempted from registration, the annual tonnage does not require a registration or the registration is envisaged for a later

registration deadline.

CAS-No.

7772-98-7

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Manufacture of substances

1.3 Details of the supplier of the safety data sheet

Company

Sigma-Aldrich New Zealand Co.

PO BOX 106-406 1030 AUCKLAND NEW ZEALAND

Telephone

: 0800 936 666

1.4 Emergency telephone number

Emergency Phone #

: NZ: 0800 928 888 Int'l +44 8701 906777

### **SECTION 2: Hazards identification**

## 2.1 Classification of the substance or mixture

Not a hazardous substance or mixture according to Regulation (EC) No. 1272/2008. This substance is not classified as dangerous according to Directive 67/548/EEC.

2.2 Label elements

The product does not need to be labelled in accordance with EC directives or respective national laws.

2.3 Other hazards - none

## SECTION 3: Composition/information on ingredients

3.1 Substances Synonyms

: Sodium thiosulphate

Formula : Na<sub>2</sub>O<sub>3</sub>S<sub>2</sub>
Molecular Weight : 158,11 g/mol
CAS-No. : 7772-98-7
EC-No. : 231-867-5

No components need to be disclosed according to the applicable regulations.

Sigma - S7026

Page 1 of 6

### SECTION 4: First aid measures

### Description of first aid measures

### If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration.

### In case of skin contact

Wash off with soap and plenty of water.

### In case of eye contact

Flush eyes with water as a precaution.

### If swallowed

Never give anything by mouth to an unconscious person. Rinse mouth with water.

### Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

#### Indication of any immediate medical attention and special treatment needed 4.3 no data available

### **SECTION 5: Firefighting measures**

### Extinguishing media

## Suitable extinguishing media

Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

### Special hazards arising from the substance or mixture

no data available

### Advice for firefighters

Wear self contained breathing apparatus for fire fighting if necessary.

#### 5.4 Further information

no data available

### **SECTION 6: Accidental release measures**

## Personal precautions, protective equipment and emergency procedures

Avoid dust formation. Avoid breathing vapours, mist or gas. For personal protection see section 8.

#### 6.2 **Environmental precautions**

Do not let product enter drains.

#### Methods and materials for containment and cleaning up 6.3

Sweep up and shovel. Keep in suitable, closed containers for disposal.

#### 6.4 Reference to other sections

For disposal see section 13.

### **SECTION 7: Handling and storage**

**Precautions for safe handling**Provide appropriate exhaust ventilation at places where dust is formed.

For precautions see section 2.2.

### Conditions for safe storage, including any incompatibilities

Store in cool place. Keep container tightly closed in a dry and well-ventilated place.

Do not store near acids.

Keep in a dry place

#### 7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

Sigma - S7026 Page 2 of 6

### SECTION 8: Exposure controls/personal protection

### **Control parameters**

Components with workplace control parameters

#### 8.2 Exposure controls

# Appropriate engineering controls General industrial hygiene practice.

### Personal protective equipment

### Eye/face protection

Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it.

Full contact

Material: Nitrile rubber

Minimum layer thickness: 0,11 mm

Break through time: 480 min

Material tested:Dermatril® (KCL 740 / Aldrich Z677272, Size M)

Splash contact

Material: Nitrile rubber

Minimum layer thickness: 0,11 mm

Break through time: 480 min

Material tested: Dermatril® (KCL 740 / Aldrich Z677272, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any

### **Body Protection**

Choose body protection in relation to its type, to the concentration and amount of dangerous substances, and to the specific work-place., The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

## Respiratory protection

Respiratory protection is not required. Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN 143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

### Control of environmental exposure

Do not let product enter drains.

### **SECTION 9: Physical and chemical properties**

## Information on basic physical and chemical properties

a) Appearance

Form: powder Colour: white

b) Odour

no data available

Sigma - S7026

Page 3 of 6

d) pH 6,0 - 8,5 at 50 g/l at 20 °C Melting point/freezing 52 °C - Decomposes on heating. e) Initial boiling point and no data available boiling range Flash point no data available g) h) Evapouration rate no data available Flammability (solid, gas) no data available Upper/lower no data available flammability or explosive limits Vapour pressure no data available Vapour density no data available 1,667 g/cm3 at 20 °C m) Relative density 210 g/l at 20 °C n) Water solubility Partition coefficient: nno data available octanol/water Auto-ignition temperature no data available Decomposition no data available q) Viscosity no data available s) Explosive properties no data available no data available Oxidizing properties Other safety information no data available

no data available

### **SECTION 10: Stability and reactivity**

c) Odour Threshold

## 10.1 Reactivity

no data available

### 10.2 Chemical stability

Stable under recommended storage conditions.

### 10.3 Possibility of hazardous reactions

no data available

## 10.4 Conditions to avoid

no data available

### 10.5 Incompatible materials

Strong acids, Strong oxidizing agents

## Hazardous decomposition products

Other decomposition products - no data available

In the event of fire: see section 5

Sigma - S7026 Page 4 of 6

### **SECTION 11: Toxicological information**

## 11.1 Information on toxicological effects

### Acute toxicity

LD50 Oral - rat - > 8.000 mg/kg

LD50 Intraperitoneal - mouse - 5.200 mg/kg

### Skin corrosion/irritation

no data available

# Serious eye damage/eye irritation no data available

### Respiratory or skin sensitisation

no data available

### Germ cell mutagenicity

no data available

### Carcinogenicity

IARC:

No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.

### Reproductive toxicity

no data available

# Specific target organ toxicity - single exposure no data available

# Specific target organ toxicity - repeated exposure no data available

### **Aspiration hazard**

### **Additional Information**

RTECS: XN6476000

To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

## **SECTION 12: Ecological information**

## 12.1 Toxicity

Toxicity to fish

LC50 - Gambusia affinis (Mosquito fish) - 24.000 mg/l - 96 h

## 12.2 Persistence and degradability

no data available

### 12.3 Bioaccumulative potential no data available

### 12.4 Mobility in soil

no data available

## 12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

## 12.6 Other adverse effects

no data available

Sigma - S7026 Page 5 of 6

### **SECTION 13: Disposal considerations**

### 13.1 Waste treatment methods

### **Product**

Offer surplus and non-recyclable solutions to a licensed disposal company.

### Contaminated packaging

Dispose of as unused product.

### **SECTION 14: Transport information**

14.1 UN number ADR/RID: -

IMDG: -

IATA: -

14.2 UN proper shipping name ADR/RID: Not dangerous goods

ADR/RID: Not dangerous goods IMDG: Not dangerous goods IATA: Not dangerous goods

14.3 Transport hazard class(es)
ADR/RID: -

R/RID: - IMDG: -

IATA: -

14.4 Packaging group

ADR/RID: -

IMDG: -

IATA: -

14.5 Environmental hazards

ADR/RID: no

IMDG Marine pollutant: no

IATA: no

14.6 Special precautions for user

no data available

### **SECTION 15: Regulatory information**

This safety datasheet complies with the requirements of Regulation (EC) No. 1907/2006.

### 15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

no data available

## 15.2 Chemical Safety Assessment

For this product a chemical safety assessment was not carried out

### SECTION 16: Other information

### **Further information**

Copyright 2014 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Sigma - S7026 Page 6 of 6



# **APPENDIX C**

Materials Safety Data Sheet for Dichlor

## Appendix 2. Material safety data sheet for dichlor.



# Paramount Pools & Spas

a division of PoolQuip Limited

### North Island:

PO Box 12840, Penrose, Auckland, New Zealand 282 Neilson Street, Onehunga, Auckland, New Zealand Phone: 0064 9 634 9097 E-Mail: <a href="mailto:info@poolquip.co.nz">info@poolquip.co.nz</a>



PO Box 8622 Riccarton, Christchurch, New Zealand 75 Blenheim Road, Riccarton, Christchurch New Zealand Phone: 0064 3 343 3441 E-Mail: <u>paramount.chc@xtra.co.nz</u>



If you have a Chemical Emergency phone 111 and ask for Fire In case of Poisoning contact The National Poisons Centre on 0800 POISON (0800 764 766) The most current version of this document is available online at www.poolquip.co.nz

# **MATERIAL SAFETY DATA SHEET (MSDS)**

### 1.0 Product & Company Information

Revision Date: April 2011

Product Name: Sodium Dichlorosisocyanurate Dihydrate

Other Names: Pool Master Super Chlor, Spa Master Sanitizer, Dichlor, SDIC
Uses: For the sanitization of Swimming Pool Water and Spa Pool Water

Distributor Details: As per header and any of our authorised retailers and distributors

### 2.0 Hazard Data

Hazardous according to criteria of NOHSC/ASCC.
Classified as Dangerous Goods According to NZS 5433:1999.

Risk Phrases & Safety Phrases:

R22 Harmful if swallowed

R31 Contact with acids liberates toxic gas R36/37 Irritating to eyes and respiratory system

Page 1 of 7
Sodium Hypochlorite

| R50/53 | Very toxic to aquatic organisms, may cause long-term adverse effects in the                  |
|--------|----------------------------------------------------------------------------------------------|
|        | aquatic environment                                                                          |
| S2     | Keep out of reach of children                                                                |
| S8     | Keep container dry                                                                           |
| S26    | In case of contact with eyes, rinse immediately with plenty of water and seek medical advice |
| S41    | In case of fire and/or explosion, do not breathe fumes                                       |
| S60    | This material and it's container must be disposed of as hazardous waste                      |
| S61    | Avoid release to the environment. Refer to special instructions / MSDS                       |

ERMA New Zealand Approval Code: HSR001324

HSNO Hazard Classification:

5.1.1B 6.1D 6.1E 6.3A 6.4A 9.1A 9.2A 9.3C

### 3.0 Composition

Chemical Name: CAS Number: Sodium Dichloroisocyanuric Dihydrate

51580-86-0

Percentage Rating:

100% (65% active chlorine)

### 4.0 First Aid Measures

Description of necessary measures according to routes of exposure.

Swallowed: Immediately rinse mouth with water. If swallowed, do NOT induce vomiting.

Give a glass of water. Seek medical attention immediately.

Eyes: Immediately flush eyes with water for at least 15 minutes. Do NOT interrupt

flushing. Take care not rinse contaminated water into the non-affected eye or

onto the face. Seek immediate medical attention.

Skin: If skin contact occurs, remove contaminated clothing and wash skin with

running water. If irritation occurs seek medical advice.

Inhaled: Remove victim from area of exposure – avoid becoming a casualty. Remove

contaminated clothing and loosen remaining clothing. Allow patient to assume most comfortable position and keep warm. Keep at rest until fully recovered. If patient finds breathing difficult and develops a blush discolouration of the skin (which suggests a lack of oxygen in the blood – cyanosis), ensure airways are clear of any obstruction and have a qualified person give oxygen through a face

Page 2 of 7
Sodium Hypochlorite

 $mask. \ Apply \ artificial \ respiration \ if \ patient \ is \ not \ breathing. \ Seek \ immediate$ 

medical advice.

Advice to Doctor: Treat symptomatically. Delayed effects from exposure to chlorine

(decomposition product) can include shortness of breath, severe headache,

pulmonary oedema and pneumonia.

Aggravated medical

### 5.0 Fire Fighting Measures

Extinguishing Media

Water spray (large quantities)

Hazards from Combustion Products Non combustible, but will support combustion of other materials

Special Protective Precautions and Equipment for Fire Fighters

Sodium dichloroisocyanurate is a powerful oxidising agent and decomposes violently upon liberating oxygen. In case of fire, area should be evacuated and specialist fire fighters called in. Only large quantities of water should be used as an extinguishing agent. If excess water is not available DO NOT attempt to extinguish the fire, use the available water to prevent the spread of fire to adjacent property. Attending fire fighters should keep upwind if possible and wear full protective equipment including rubber boots and self-contained breathing apparatus. A fire in the vicinity of sodium dichloroisocuanurate should be extinguished in the most practical manner but avoid contaminating this material with the fire fighting agent, including water. Decomposes on contact with water evolving toxic chlorine gas and in the presence of small amounts of water, the explosive gas nitrogen trichloride. Once fire is extinguished, wash area thoroughly with excess water. Ensure that drains are not blocked with solid material. Maintenance of excess water during clean up operation is essential. Combustible material involved in the incident should be removed to a safe open area for controlled burning or for further drenching with water prior to collection for disposal.

Hazchem Code

2WE

#### 6.0 Accidental Release Measures

**Emergency Procedures** 

Clear area of all unprotected personnel. If contamination of sewers or

waterways has occurred, advise local emergency services.

Methods and Materials

Wear protective equipment to prevent skin and eye contact and

Page 3 of 7 Sodium Hypochlorite for Containment and Clean Up breathing in vapours. Air supplied masks are recommended to avoid inhalation of toxic material. Do NOT return spilled material to original container, and do NOT mix fresh with recovered material. Do NOT add small amounts of water to sodium dichloroisocyanurate. Collect and transfer to large volume of water - do NOT use a metal container. To neutralise, as sodium sulfite (2.4Kg/Kg product). If no active chlorine remains, add soda ash (1.1Kg/Kg product) to effect complete neutralisation. Where a spill has occured in a confined space or an inadequately ventillated enclosure and the material is damp and evolving chlorine, the rate of chlorine evolution may be reduced by covering the thinly spread solid with soda ash.

#### 7.0 Handling & Storage

Precautions for Safe Handling Ensure an eye bath and safety shower are available and ready for use. Observe good personal hygiene practices and recommended procedures. Wash thoroughly after handling. Avoid skin and eye contact and breathing in dust. Keep out of reach of children.

Conditions for Safe Storage (Including any compatibles) Store in a cool, dry, well-ventilated area. Keep containers tightly closed when not in use. Inspect regularly for deficiencies such as damage or leaks. Protect against physical damage. Store away from incompatible materials such as flammable, organic and combustible materials, ammonium salts, nitrogenous material, acids, water, reducing agents, strong bases, calcium hypochlorite, metals and sources of ignition. Protect from direct sunlight, moisture, food and feedstuffs. Keep dry, reactive with water, may lead to drum rupture. This product is hygroscopic. This product has a UN classification of 2465 and a Dangerous Goods Class 5.1 (Oxidizers) according to The Australian Code for the Transport of Dangerous Goods by Road and Rail.

Container Type

Use corrosion-resistant structural materials. Containers made of inert plastics are preferred.

### 8.0 Exposure Controls / Personal Protection

National Exposure Standards No value assigned to this specific material by the New Zealand Occupational Safety and Health Service (OSH). However, Exposure Standard(s) for decomposition product(s):

Chlorine: WES-TWA 0.5ppm, 1.5mg/m3, WES-STEL 1ppm, 2.9mg/m3

WES – TWA = Workplace Exposure Standard – Time Weighted Average. The eight hour, time weighted average exposure is designed to protect the worker from the effects of long-term exposure.

WES – STEL = Workplace Exposure Standard – Short Term Exposure Limits. The 15 minute average exposure standard. Applies to any 15 minute period in the working day and is designed to protect the worker

Page 4 of 7
Sodium Hypochlorite

against adverse effects of irritation, chronic or irreversible tissue change, or narcosis that may increase the likelihood of accidents. The WES-STEL is not an alternative to the WES-TWN; both short-term and eight-hour, time weighted average exposures should be determined.

These Exposure Standards are guides to be used in the control of occupational health hazards. All atmospheric contamination should be kept to as low a level as is workable. These exposure standards should not be used as fine dividing lines between safe and dangerous concentrations of chemicals. They are not a measure of relative toxicity.

#### **Biological Limit Values**

Engineering Controls Ensure ventilation is adequate and that air concentrations of

decomposition product(s) is/are controlled below quoted Exposure Standards. Avoid generating and breathing in dusts. Use with local exhaust ventilation or while wearing dust mask. Keep containers closed

when not in use.

Personal Protection RESPIRATOR: Wear an approved respirator with suitable filter for

organic gases and vapours if engineering controls are inadequate (AS1715/1716). EYES: Chemical goggles to prevent splashing in the eyes (AS1336/1337). HANDS: Butyl rubber gloves break through time 4hr (AS2161). CLOTHING: Chemical-resistant coveralls and safety footwear

(AS3765/2210).

### 9.0 Physical and Chemical Properties

Appearance Crustalline Powder, granules or tablets

240 Dec C

Formula C3HCI2N303.Na Odour Chlorine Odour Vapour Pressure Not Applicable Vapour Density Not Applicable Not Applicable **Boiling Point** Melting Point 240 deg C Solubility in Water 250g/L @ 25 Deg C Specific Gravity 2.03 (Water = 1) Flash Point Not Applicable 6.5 (1% solution) Rate of Solid Materials Not Known

Decomposition Temperature

Additional Information

### 10.0 Stability and Reactivity

Chemical Stability Powerful oxidising agent. Sodium dichloroisocyanurate reacts with

water and acids evolving toxic chlorine gas and in the presence of small amounts of water, the explosive gas nitrogen trichloride. Decomposes in

Page 5 of 7 Sodium Hypochlorite alkaline conditions evolving carbon dioxide, nitrogen and chloramines

gases.

Conditions to Avoid Avoid exposure to moisture, avoid exposure to heat. Avoid exposure to

sunlight.

Chlorine

materials, acids and water.

Hazardous

**Decomposition Products** 

Hazardous Reactions Sodium dichloroisocuanurate reacts with water and acids evolving toxic

chlorine gas and in the presence of small amounts of water the explosive gas nitrogen trichloride. Decomposes in alkaline conditions

evolving carbon dioxide, nitrogen and chloramine gases.

11.0 Toxicological Information

Toxicity Data Oral LD50 Rat: 1355-1400mg/Kg

Health Effects - Acute

Swallowed Can result in nausea, vomiting, diarrhoea and gastrointestinal irritation.

Eye Ajn eye irritant

Skin Contact with skin may result in irritation

Inhaled Material is irritant to the mucous membranes of the respiratory tract

(airways). Inhalation of high concentrations may result in shortness of breath, chest pain, severe headache and lung damage including

pulmonary oedema. Effects may be delayed.

12.0 Ecological Information

Ecotoxicity Avoid contaminating waterways

Persistence and Degradability No information available on persistence/degradability for this product

Mobility Completely soluble in water.

**Environmental Fate** 

(Exposure)

Do NOT let product reach waterways, drains and sewers.

Bioaccumlative Potential No information available on bioaccumulation for this product.

Page 6 of 7
Sodium Hypochlorite

#### 13.0 Disposal Considerations

Disposal Dispose of in accordance with all local, state and federal regulations. All

empty packaging should be disposed of in accordance with Local, State and Federal Regulations or recycled/reconditioned at an approved

facility.

Special Precautions for Land Fill or Incineration Contact a specialist disposal company or the local waste regulator for advice. This should be done in accordance with 'The Hazardous Waste

Act.

### 14.0 Transport Information

Land and Sea Transport

UN Number 2465

Shipping Name Sodium Dichloroisocyanurate

Dangerous Goods Class 5.1
Packing Group II
Hazchem Code 2WE

#### 15.0 Regulatory Information

Classified as hazardous according to HS (minimum degrees of hazard) regulations 2001.

**HSNO** Hazard Classification

5.1.1B 6.1D 6.1E 6.3A 6.4A 9.1A 9.2A 9.3C

ERMA Approval Code HSR001324

### 16.0 Other Information

None

Page 7 of 7 Sodium Hypochlorite



### **APPENDIX D**

Dichlor dosing Table

Appendix 4. Look-up tables for dosing encapsulated water with chlorine and for neutralising residual chlorine with sodium thiosulphate.

Table 2. Amount (kg) of dichlor required to provide different concentrations of FAC for different volumes of encapsulated water ('Volume'). The column for 200 mg/L would be used to set up the treatment initially and other columns used to restore the concentration during treatment, based on the difference between the measured concentration and the target concentration (200 mg/L). The volume of encapsulated water in the worked example (section 8, trawler) is highlighted.

| uav        | vier) is nignlign | ileu. | Differen | ce hetween m | easured and ta | arget FAC cond | entration (mg/ | 1)    |       |       |
|------------|-------------------|-------|----------|--------------|----------------|----------------|----------------|-------|-------|-------|
| Volume (L) | 25                | 50    | 75       | 100          | 125            | 150            | 175            | 180   | 190   | 200   |
| 1000       | 0.05              | 0.09  | 0.14     | 0.18         | 0.23           | 0.27           | 0.32           | 0.33  | 0.35  | 0.36  |
| 2000       | 0.09              | 0.18  | 0.27     | 0.36         | 0.45           | 0.55           | 0.64           | 0.65  | 0.69  | 0.73  |
| 3000       | 0.14              | 0.27  | 0.41     | 0.55         | 0.68           | 0.82           | 0.95           | 0.98  | 1.04  | 1.09  |
| 4000       | 0.18              | 0.36  | 0.55     | 0.73         | 0.91           | 1.09           | 1.27           | 1.31  | 1.38  | 1.45  |
| 5000       | 0.23              | 0.45  | 0.68     | 0.91         | 1.14           | 1.36           | 1.59           | 1.64  | 1.73  | 1.82  |
| 6000       | 0.27              | 0.55  | 0.82     | 1.09         | 1.36           | 1.64           | 1.91           | 1.96  | 2.07  | 2.18  |
| 7000       | 0.32              | 0.64  | 0.95     | 1.27         | 1.59           | 1.91           | 2.23           | 2.29  | 2.42  | 2.55  |
| 8000       | 0.36              | 0.73  | 1.09     | 1.45         | 1.82           | 2.18           | 2.55           | 2.62  | 2.76  | 2.91  |
| 9000       | 0.41              | 0.82  | 1.23     | 1.64         | 2.05           | 2.45           | 2.86           | 2.95  | 3.11  | 3.27  |
| 10000      | 0.45              | 0.91  | 1.36     | 1.82         | 2.27           | 2.73           | 3.18           | 3.27  | 3.45  | 3.64  |
| 15000      | 0.68              | 1.36  | 2.05     | 2.73         | 3.41           | 4.09           | 4.77           | 4.91  | 5.18  | 5.45  |
| 20000      | 0.91              | 1.82  | 2.73     | 3.64         | 4.55           | 5.45           | 6.36           | 6.55  | 6.91  | 7.27  |
| 25000      | 1.14              | 2.27  | 3.41     | 4.55         | 5.68           | 6.82           | 7.95           | 8.18  | 8.64  | 9.09  |
| 30000      | 1.36              | 2.73  | 4.09     | 5.45         | 6.82           | 8.18           | 9.55           | 9.82  | 10.36 | 10.91 |
| 35000      | 1.59              | 3.18  | 4.77     | 6.36         | 7.95           | 9.55           | 11.14          | 11.45 | 12.09 | 12.73 |
| 40000      | 1.82              | 3.64  | 5.45     | 7.27         | 9.09           | 10.91          | 12.73          | 13.09 | 13.82 | 14.55 |
| 45000      | 2.05              | 4.09  | 6.14     | 8.18         | 10.23          | 12.27          | 14.32          | 14.73 | 15.55 | 16.36 |
| 50000      | 2.27              | 4.55  | 6.82     | 9.09         | 11.36          | 13.64          | 15.91          | 16.36 | 17.27 | 18.18 |
| 55000      | 2.50              | 5.00  | 7.50     | 10.00        | 12.50          | 15.00          | 17.50          | 18.00 | 19.00 | 20.00 |
| 60000      | 2.73              | 5.45  | 8.18     | 10.91        | 13.64          | 16.36          | 19.09          | 19.64 | 20.73 | 21.82 |
| 65000      | 2.95              | 5.91  | 8.86     | 11.82        | 14.77          | 17.73          | 20.68          | 21.27 | 22.45 | 23.64 |
| 70000      | 3.18              | 6.36  | 9.55     | 12.73        | 15.91          | 19.09          | 22.27          | 22.91 | 24.18 | 25.45 |
| 75000      | 3.41              | 6.82  | 10.23    | 13.64        | 17.05          | 20.45          | 23.86          | 24.55 | 25.91 | 27.27 |
| 80000      | 3.64              | 7.27  | 10.91    | 14.55        | 18.18          | 21.82          | 25.45          | 26.18 | 27.64 | 29.09 |
| 85000      | 3.86              | 7.73  | 11.59    | 15.45        | 19.32          | 23.18          | 27.05          | 27.82 | 29.36 | 30.91 |
| 90000      | 4.09              | 8.18  | 12.27    | 16.36        | 20.45          | 24.55          | 28.64          | 29.45 | 31.09 | 32.73 |
| 95000      | 4.32              | 8.64  | 12.95    | 17.27        | 21.59          | 25.91          | 30.23          | 31.09 | 32.82 | 34.55 |
| 100000     | 4.55              | 9.09  | 13.64    | 18.18        | 22.73          | 27.27          | 31.82          | 32.73 | 34.55 | 36.36 |



**APPENDIX E** 

Sodium thiosulphate dosing Table

Table 3. Amount (g) of sodium thiosulphate required to neutralise (*i.e.* reduce the concentration to < 0.5mg/L) a given residual concentration of FAC for different volumes of encapsulated water ('Volume'). Values are based on a mass ratio of 1.86:1 sodium thiosulphate to FAC. The volume of encapsulated water in the worked example (section 8, trawler) is highlighted.

|            |     | Residual FAC concentration (mg/L) |     |     |     |      |      |      |      |      |
|------------|-----|-----------------------------------|-----|-----|-----|------|------|------|------|------|
| Volume (L) | 1   | 2                                 | 3   | 4   | 5   | 10   | 15   | 20   | 30   | 50   |
| 1000       | 2   | 4                                 | 6   | 7   | 9   | 19   | 28   | 37   | 56   | 93   |
| 2000       | 4   | 7                                 | 11  | 15  | 19  | 37   | 56   | 74   | 112  | 186  |
| 3000       | 6   | 11                                | 17  | 22  | 28  | 56   | 84   | 112  | 167  | 279  |
| 4000       | 7   | 15                                | 22  | 30  | 37  | 74   | 112  | 149  | 223  | 372  |
| 5000       | 9   | 19                                | 28  | 37  | 47  | 93   | 140  | 186  | 279  | 465  |
| 6000       | 11  | 22                                | 33  | 45  | 56  | 112  | 167  | 223  | 335  | 558  |
| 7000       | 13  | 26                                | 39  | 52  | 65  | 130  | 195  | 260  | 391  | 651  |
| 8000       | 15  | 30                                | 45  | 60  | 74  | 149  | 223  | 298  | 446  | 744  |
| 9000       | 17  | 33                                | 50  | 67  | 84  | 167  | 251  | 335  | 502  | 837  |
| 10000      | 19  | 37                                | 56  | 74  | 93  | 186  | 279  | 372  | 558  | 930  |
| 15000      | 28  | 56                                | 84  | 112 | 140 | 279  | 419  | 558  | 837  | 1395 |
| 20000      | 37  | 74                                | 112 | 149 | 186 | 372  | 558  | 744  | 1116 | 1860 |
| 25000      | 47  | 93                                | 140 | 186 | 233 | 465  | 698  | 930  | 1395 | 2325 |
| 30000      | 56  | 112                               | 167 | 223 | 279 | 558  | 837  | 1116 | 1674 | 2790 |
| 35000      | 65  | 130                               | 195 | 260 | 326 | 651  | 977  | 1302 | 1953 | 3255 |
| 40000      | 74  | 149                               | 223 | 298 | 372 | 744  | 1116 | 1488 | 2232 | 3720 |
| 45000      | 84  | 167                               | 251 | 335 | 419 | 837  | 1256 | 1674 | 2511 | 4185 |
| 50000      | 93  | 186                               | 279 | 372 | 465 | 930  | 1395 | 1860 | 2790 | 4650 |
| 55000      | 102 | 205                               | 307 | 409 | 512 | 1023 | 1535 | 2046 | 3069 | 5115 |
| 60000      | 112 | 223                               | 335 | 446 | 558 | 1116 | 1674 | 2232 | 3348 | 5580 |
| 65000      | 121 | 242                               | 363 | 484 | 605 | 1209 | 1814 | 2418 | 3627 | 6045 |
| 70000      | 130 | 260                               | 391 | 521 | 651 | 1302 | 1953 | 2604 | 3906 | 6510 |
| 75000      | 140 | 279                               | 419 | 558 | 698 | 1395 | 2093 | 2790 | 4185 | 6975 |
| 80000      | 149 | 298                               | 446 | 595 | 744 | 1488 | 2232 | 2976 | 4464 | 7440 |
| 85000      | 158 | 316                               | 474 | 632 | 791 | 1581 | 2372 | 3162 | 4743 | 7905 |
| 90000      | 167 | 335                               | 502 | 670 | 837 | 1674 | 2511 | 3348 | 5022 | 8370 |
| 95000      | 177 | 353                               | 530 | 707 | 884 | 1767 | 2651 | 3534 | 5301 | 8835 |
| 100000     | 186 | 372                               | 558 | 744 | 930 | 1860 | 2790 | 3720 | 5580 | 9300 |



### **APPENDIX F**

**Consultation Summary** 

### CONSULTATION SUMMARY - PROPOSED DISCHARGE OF BIOCIDE INTO THE CMA ASSOCIATED WITH THE TREATMENT AND ERADICATION OF INVASIVE MARINE SPECIES

| PARTY & REPRESENTATIVE                           | EMAIL ADDRESS/CONTACT       | INITIAL EMAIL<br>DATE | ADDITIONAL EMAIL DATES | FEEDBACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|--------------------------------------------------|-----------------------------|-----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| lwi and hapū with interests in the area:         |                             | ·                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Aukaha – on behalf of Ōtākou Rūnaka              | Aukaha Portal               | -                     | 26-Feb-25, 25-Mar-25   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| East Otago Taiāpure Komiti                       | -                           | -                     | -                      | The proposal was verbally presented to the East Otago Taiāpure Komiti on [08-Mar-25]. The feedback received was positive, as this is seen as a proactive approach with no particular concerns raised.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Kāti Huirapa Rūnaka Ki Puketeraki                | -                           | -                     | -                      | The draft resource consent application was shared with a representative of Kāti Huirapa Rūnaka Ki Puketeraki on 2 Marc 2025 as part of the sabella incursion response. The feedback verbally received was positive, as this is seen as a proactive approach.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Other Stakeholders with interests in the         | e application:              |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Biosecurity NZ (Ministry for Primary Industries) | Katherine.Walls@mpi.govt.nz | 31-Mar-25             | 11-Apr-25              | Thank you for the opportunity to provide comment on the resource consent application to discharge biocide into the Otago CMA for invasive marine species treatment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                  |                             |                       |                        | In general, the consent application document is well written and addresses most, if not all the main issues relating to ORC discharging biocides into the CMA to control marine pests associated with biofouling of vessels and structures. The following key comments / recommendations are made:                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                  |                             |                       |                        | <ul> <li>Recommend including an updated picture of the treatment process. The technique of wrapping/encapsulating vessels has improved markedly, with the material being fit more snugly (and therefore securely) around the vessel's hull.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                  |                             |                       |                        | Recommend citing the reference to the recommended treatment duration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                  |                             |                       |                        | <ul> <li>Comment that the DO reduction due to respiration varies according to the amount of biofouling present &amp; type of biofouling growing on the vessel hull/ structure being encapsulated, so may not be negligible. Further, the longer the vessel is securely wrapped, the more the DO reduction and resultant die-off of biofouling. We wrapped a heavily fouled fishing vessel and left the wrapping in situ for approx. 25 – 28 days. Apart from some hardy barnacles and filamentous weed growing near the top of the wrapping, everything else died. Cawthron also did some DO measurements to show the decline in DO over time (the takeaway is that addition of a biocide is more efficient because it results in a quicker effect).</li> </ul> |  |
|                                                  |                             |                       |                        | <ul> <li>Consider noting the estimate of cost of marine pests to the aquaculture industry will be considerably more since the<br/>date of the publication</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                  |                             |                       |                        | <ul> <li>Consider some discussion regarding other alternatives to managing biofouling using biocides – e.g. slipping infested vessels and having the hull clean &amp; antifouled (preferred option, if feasible); hand removal (if feasible i.e. in low numbers); scraping the hull underwater (generally least preferred option) etc</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                  |                             |                       |                        | <ul> <li>Comment that biofouling can comprise more than one species and not all biofouling species can outcompete native<br/>species.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| University Marine Science Department             |                             | -                     | -                      | Did not feel the need to provide feedback.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Southern Clams                                   | 1-Apr-25                    | -                     | -                      | We are in support of the resource consent for the management of specific invasive species, it's clear this particular species, 'Sabella' needs to be removed before it becomes so spread that it is unpracticable & unviable to continue attempts to remove it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                  |                             |                       |                        | Our harvest areas (growing areas) are situated on the middle banks of the harbour, the channel tidal flow being a natural barrier along with huge dilution, I don't think there is any concern for our clam harvesting operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

Appendix F - Consultation Summary

| PARTY & REPRESENTATIVE | EMAIL ADDRESS/CONTACT    | INITIAL EMAIL<br>DATE | ADDITIONAL EMAIL DATES | FEEDBACK                                                                                                                                                                                                                                                                                                                            |
|------------------------|--------------------------|-----------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                          |                       |                        | We do also harvest Undaria (Wakame) during winter and spring (growing stage of Undaria), for a range of purposes including food products available in Aotearoa, it's harvested under a biosecurity permit and some of the variable sites can be near to the shoreline.                                                              |
|                        |                          |                       |                        | It would be very helpful if we were included in any list of parties to be notified with details and plans when the treatment operations would occur if that was possible.                                                                                                                                                           |
|                        |                          |                       |                        | It also would be easy for us to manage our Undaria harvest operation with any ORC plans.                                                                                                                                                                                                                                            |
| Port Otago             | ben.ryan@portotago.co.nz | 31-Mar-25             | -                      | The proposal was discussed at a meeting with Port Otago on 3 February 2025. Port Otago raised concerns over cost and feasibility due to the extent of the port structure area, but no specific concerns were raised over risks or methods. The draft resource consent application was also shared with Port Otago on 31 March 2025. |

2 -Appendix F - Consultation Summary



### **APPENDIX G**

Marine and Coastal Areas Act – notice of application

26 March 2025

Gabrielle Huria Ngāi Tahu Whanui

Via Email: maca@ngaitahu.iwi.nz

Tēnā koe Gabrielle

RE Discharge of contaminants (biocide) into the Coastal Marine Area associated with the treatment and eradication of invasive non-indigenous marine species – Notice of Resource Consent Application

As you are listed as the contact for the Marine and Coastal Area (Takutai Moana) Act (MACA) 2011 applicant group Ngāi Tahu Whanui<sup>1</sup>, I am writing to advise you of the resource consent application which will be lodged with Otago Regional Council ("ORC") (as consent authority), by the Otago Regional Council (as applicant) for the discharge of contaminants into the coastal marine area ("CMA") associated with the treatment and eradication of invasive non-indigenous marine species.

The Mediterranean fanworm (*Sabella spallanzanii* – "**Sabella**") is just one example of an invasive non-indigenous marine species which has recently been discovered at Port Chalmers in Otago. Sabella, and other invasive non-indigenous marine species have the potential to severely damage marine ecosystems by outcompeting native species for food and space. The damage caused by these invasive non-indigenous marine species can have a devastating impact on marine biodiversity, natural resources, marine industries, water quality and mahinga kai.

Sabella and other hull fouling organisms are usually introduced into the environment on ships, either attached to the submerged surface of ships (biofouling<sup>2</sup>) or in the ballast water carried by large vessels to maintain stability and can spread to new locations. It is therefore critical for the ORC to respond quickly to any marine pest incursions in areas with high levels of vessel traffic and prevent the spread of hull fouling organisms into other more vulnerable areas of the CMA.

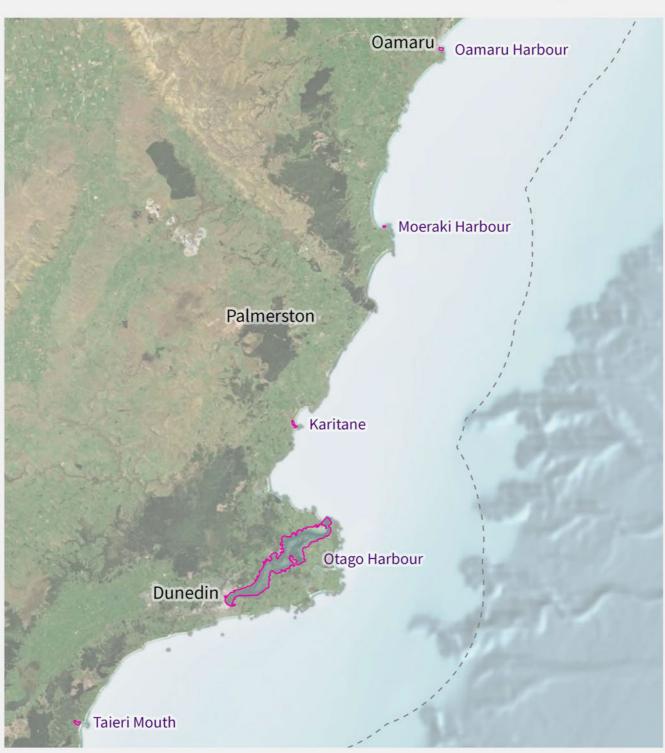
To kill biofouling, the ORC proposes to encapsulate the affected hard surface and add a biocide to the volume of water trapped between the hard surface and the encapsulating material. Encapsulation kills biofouling either by restricting the exchange of water, leading to deoxygenation as fouling organisms respire, or by enclosing organisms with an added biocide. Of the potentially suitable biocides, the ORC has elected to use a chlorine solution for the purpose of treating biofouling based on its demonstrated effectiveness, ease of use, health and safety considerations and low environmental effects. Further details of the treatment method and associated environmental effects can be found here: <a href="http://envirolink.govt.nz/assets/Envirolink/1573-NLCC87-Addition-of-biocide-during-vessel-biofouling-treatment-an-assessment-of-environmental-effects.pdf">http://envirolink.govt.nz/assets/Envirolink/1573-NLCC87-Addition-of-biocide-during-vessel-biofouling-treatment-an-assessment-of-environmental-effects.pdf</a>

The Otago Regional Council will be applying for a resource consent to discharge contaminants (biocide) into the CMA associated with the treatment and removal of invasive non indigenous marine species) in Karitane, Taieri Mouth, Otago harbour, Oamaru harbour and Moreaki, being those areas of Otago with higher levels of vessel traffic. A map showing the potential treatment areas is attached to this letter.

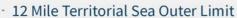
<sup>&</sup>lt;sup>1</sup> Your Crown engagement application number is MAC-01-13-002

<sup>&</sup>lt;sup>2</sup> Biofouling is the accumulation of marine pests (such as Sabella), microorganisms, plants, and algae on vessel hulls and other hard surfaces.

The Otago Regional Council invites you to express your views on the proposal. Please contact me at Jennifer Rose of Mitchell Daysh at <u>Jennifer.rose@mitchelldaysh.co.nz</u> in the first instance.


Ngā mihi nui




Jennifer Rose Planning Consultant on behalf of Otago Regional Council

## **Marine Invasive Species Treatment Areas: Overview**











## Marine Invasive Species Treatment Areas: Karitane



140

280



## **Marine Invasive Species Treatment Areas: Moeraki**



70

metres

140



# Marine Invasive Species Treatment Areas: Oamaru Harbour



120

240



Information on this map may not be used for the purposes of any legal disputes. The user should independently verify the accuracy of any information before taking any action in reliance upon it. This 180x250mm map was generated on 18/11/2024 at the scale of 1:5,000.

# Marine Invasive Species Treatment Areas: Otago Harbour



2,000

4,000



## Marine Invasive Species Treatment Areas: Taieri Mouth



140

280



Information on this map may not be used for the purposes of any legal disputes. The user should independently verify the accuracy of any information before taking any action in reliance upon it. This 180x250mm map was generated on 18/11/2024 at the scale of 1:6,000.

| Paul and Na | talie Karaitiana |  |
|-------------|------------------|--|
| Via Email:  |                  |  |

Tēnā koe Paul and Natalie

RE Discharge of contaminants (biocide) into the Coastal Marine Area associated with the treatment and eradication of invasive non-indigenous marine species – Notice of Resource Consent Application

As you are listed as the contact for the Marine and Coastal Area (Takutai Moana) Act (MACA) 2011 applicant group Paul and Natalie Karaitiana<sup>1</sup>, I am writing to advise you of the resource consent application which will be lodged with Otago Regional Council ("ORC") (as consent authority), by the Otago Regional Council (as applicant) for the discharge of contaminants into the coastal marine area ("CMA") associated with the treatment and eradication of invasive non-indigenous marine species.

The Mediterranean fanworm (*Sabella spallanzanii* – "**Sabella**") is just one example of an invasive non-indigenous marine species which has recently been discovered at Port Chalmers in Otago. Sabella, and other invasive non-indigenous marine species have the potential to severely damage marine ecosystems by outcompeting native species for food and space. The damage caused by these invasive non-indigenous marine species can have a devastating impact on marine biodiversity, natural resources, marine industries, water quality and mahinga kai.

Sabella and other hull fouling organisms are usually introduced into the environment on ships, either attached to the submerged surface of ships (biofouling<sup>2</sup>) or in the ballast water carried by large vessels to maintain stability and can spread to new locations. It is therefore critical for the ORC to respond quickly to any marine pest incursions in areas with high levels of vessel traffic and prevent the spread of hull fouling organisms into other more vulnerable areas of the CMA.

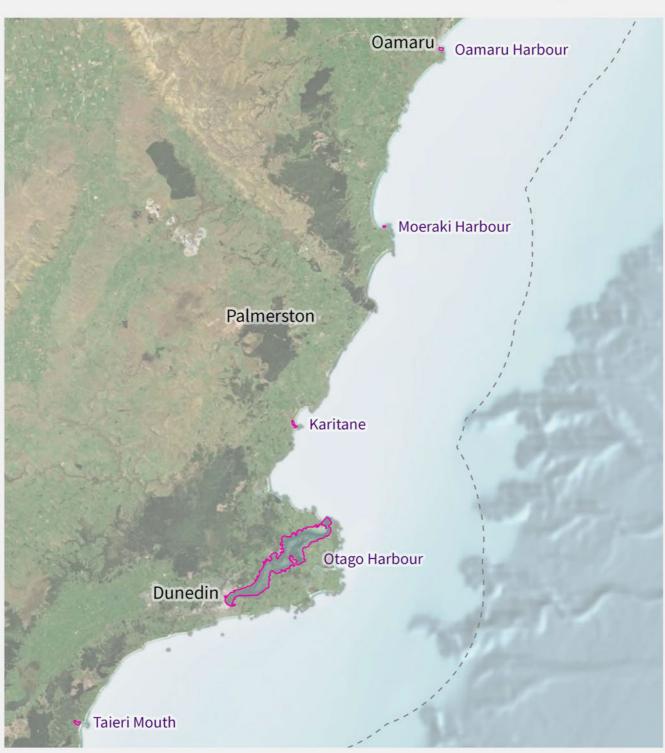
To kill biofouling, the ORC proposes to encapsulate the affected hard surface and add a biocide to the volume of water trapped between the hard surface and the encapsulating material. Encapsulation kills biofouling either by restricting the exchange of water, leading to deoxygenation as fouling organisms respire, or by enclosing organisms with an added biocide. Of the potentially suitable biocides, the ORC has elected to use a chlorine solution for the purpose of treating biofouling based on its demonstrated effectiveness, ease of use, health and safety considerations and low environmental effects. Further details of the treatment method and associated environmental effects can be found here: <a href="http://envirolink.govt.nz/assets/Envirolink/1573-NLCC87-Addition-of-biocide-during-vessel-biofouling-treatment-an-assessment-of-environmental-effects.pdf">http://envirolink.govt.nz/assets/Envirolink/1573-NLCC87-Addition-of-biocide-during-vessel-biofouling-treatment-an-assessment-of-environmental-effects.pdf</a>

The Otago Regional Council will be applying for a resource consent to discharge contaminants (biocide) into the CMA associated with the treatment and removal of invasive non indigenous marine species) in Karitane, Taieri Mouth, Otago harbour, Oamaru harbour and Moreaki, being those areas of Otago with higher levels of vessel traffic. A map showing the potential treatment areas is attached to this letter.

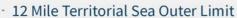
<sup>&</sup>lt;sup>1</sup> Your Crown engagement application number is MAC-01-13-005

<sup>&</sup>lt;sup>2</sup> Biofouling is the accumulation of marine pests (such as Sabella), microorganisms, plants, and algae on vessel hulls and other hard surfaces.

The Otago Regional Council invites you to express your views on the proposal. Please contact me at Jennifer Rose of Mitchell Daysh at <u>Jennifer.rose@mitchelldaysh.co.nz</u> in the first instance.


Ngā mihi nui




Jennifer Rose Planning Consultant on behalf of Otago Regional Council

## **Marine Invasive Species Treatment Areas: Overview**











## Marine Invasive Species Treatment Areas: Karitane



140

280



## **Marine Invasive Species Treatment Areas: Moeraki**



70

metres

140



# Marine Invasive Species Treatment Areas: Oamaru Harbour



120

240



Information on this map may not be used for the purposes of any legal disputes. The user should independently verify the accuracy of any information before taking any action in reliance upon it. This 180x250mm map was generated on 18/11/2024 at the scale of 1:5,000.

# Marine Invasive Species Treatment Areas: Otago Harbour



2,000

4,000



## Marine Invasive Species Treatment Areas: Taieri Mouth



140

280



Information on this map may not be used for the purposes of any legal disputes. The user should independently verify the accuracy of any information before taking any action in reliance upon it. This 180x250mm map was generated on 18/11/2024 at the scale of 1:6,000.

#### Te Maiharoa Whanau

Tēnā koe Lesley

RE Discharge of contaminants (biocide) into the Coastal Marine Area associated with the treatment and eradication of invasive non-indigenous marine species – Notice of Resource Consent Application

As you are listed as the contact for the Marine and Coastal Area (Takutai Moana) Act (MACA) 2011 applicant group Te Maiharoa Whanau<sup>1</sup>, I am writing to advise you of the resource consent application which will be lodged with Otago Regional Council ("ORC") (as consent authority), by the Otago Regional Council (as applicant) for the discharge of contaminants into the coastal marine area ("CMA") associated with the treatment and eradication of invasive non-indigenous marine species.

The Mediterranean fanworm (*Sabella spallanzanii* – "**Sabella**") is just one example of an invasive non-indigenous marine species which has recently been discovered at Port Chalmers in Otago. Sabella, and other invasive non-indigenous marine species have the potential to severely damage marine ecosystems by outcompeting native species for food and space. The damage caused by these invasive non-indigenous marine species can have a devastating impact on marine biodiversity, natural resources, marine industries, water quality and mahinga kai.

Sabella and other hull fouling organisms are usually introduced into the environment on ships, either attached to the submerged surface of ships (biofouling<sup>2</sup>) or in the ballast water carried by large vessels to maintain stability and can spread to new locations. It is therefore critical for the ORC to respond quickly to any marine pest incursions in areas with high levels of vessel traffic and prevent the spread of hull fouling organisms into other more vulnerable areas of the CMA.

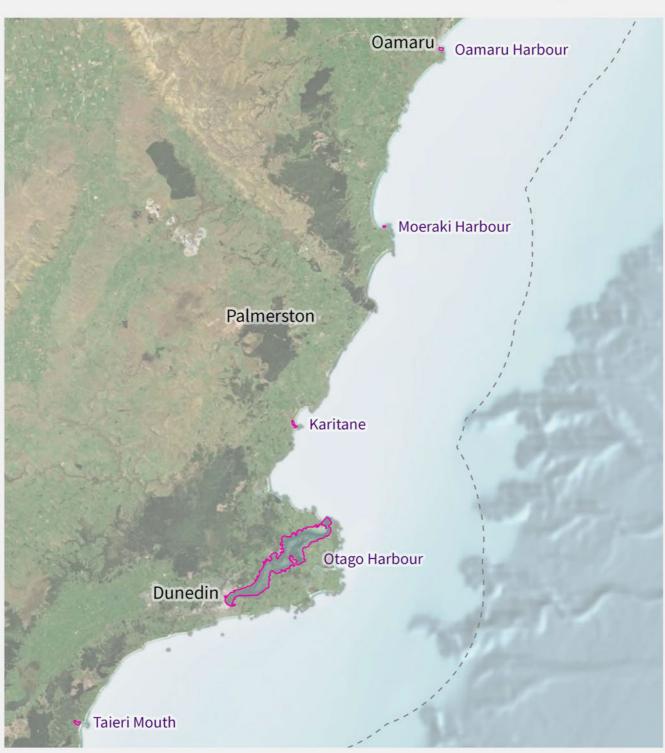
To kill biofouling, the ORC proposes to encapsulate the affected hard surface and add a biocide to the volume of water trapped between the hard surface and the encapsulating material. Encapsulation kills biofouling either by restricting the exchange of water, leading to deoxygenation as fouling organisms respire, or by enclosing organisms with an added biocide. Of the potentially suitable biocides, the ORC has elected to use a chlorine solution for the purpose of treating biofouling based on its demonstrated effectiveness, ease of use, health and safety considerations and low environmental effects. Further details of the treatment method and associated environmental effects can be found here: <a href="http://envirolink.govt.nz/assets/Envirolink/1573-NLCC87-Addition-of-biocide-during-vessel-biofouling-treatment-an-assessment-of-environmental-effects.pdf">http://envirolink.govt.nz/assets/Envirolink/1573-NLCC87-Addition-of-biocide-during-vessel-biofouling-treatment-an-assessment-of-environmental-effects.pdf</a>

The Otago Regional Council will be applying for a resource consent to discharge contaminants (biocide) into the CMA associated with the treatment and removal of invasive non indigenous marine species) in Karitane, Taieri Mouth, Otago harbour, Oamaru harbour and Moreaki, being those areas of Otago with higher levels of vessel traffic. A map showing the potential treatment areas is attached to this letter.

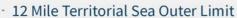
<sup>&</sup>lt;sup>1</sup> Your Crown engagement application number is MAC-01-13-009

<sup>&</sup>lt;sup>2</sup> Biofouling is the accumulation of marine pests (such as Sabella), microorganisms, plants, and algae on vessel hulls and other hard surfaces.

The Otago Regional Council invites you to express your views on the proposal. Please contact me at Jennifer Rose of Mitchell Daysh at <u>Jennifer.rose@mitchelldaysh.co.nz</u> in the first instance.


Ngā mihi nui




Jennifer Rose Planning Consultant on behalf of Otago Regional Council

## **Marine Invasive Species Treatment Areas: Overview**











## Marine Invasive Species Treatment Areas: Karitane



140

280



## **Marine Invasive Species Treatment Areas: Moeraki**



70

metres

140



# Marine Invasive Species Treatment Areas: Oamaru Harbour



120

240



Information on this map may not be used for the purposes of any legal disputes. The user should independently verify the accuracy of any information before taking any action in reliance upon it. This 180x250mm map was generated on 18/11/2024 at the scale of 1:5,000.

# Marine Invasive Species Treatment Areas: Otago Harbour



2,000

4,000



## Marine Invasive Species Treatment Areas: Taieri Mouth



140

280

